Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech scientists create new process to 'program' cancer cell death

07.09.2010
Researchers at the California Institute of Technology (Caltech) have engineered a fundamentally new approach to killing cancer cells. The process—developed by Niles Pierce, associate professor of applied and computational mathematics and bioengineering at Caltech, and his colleagues—uses small RNA molecules that can be programmed to attack only specific cancer cells; then, by changing shape, those molecules cause the cancer cells to self-destruct.

In conventional chemotherapy treatments for cancer, patients are given drugs that target cell behaviors typical of—but not exclusive to—cancer cells. For example, cancer drugs commonly attack cells that divide rapidly, because such accelerated division is a hallmark of most cancer cells. Unfortunately, rapid cell division is a property of normal cells in the bone marrow, digestive tract, and hair follicles, and so these cells are also killed, leading to a host of debilitating side effects.

A better method, says Pierce, is to create drugs that can first distinguish cancer cells from healthy cells and then, once those cells have been spotted, mark them for destruction; in other words, to produce molecules that diagnose cancer cells before eradicating them. This type of therapy could do away with the side effects associated with conventional chemotherapy treatments. It also could be tailored on a molecular level to individual cancers, making it uniquely specific.

In a paper slated to appear online the week of September 6 in the Proceedings of the National Academy of Sciences (PNAS), Pierce and his colleagues describe just such a process. It employs hairpin-shaped molecules known as small conditional RNAs, which are less than 30 base pairs in length. (An average gene is thousands of base pairs long.)

The researchers' method involves the use of two different varieties of small conditional RNA. One is designed to be complementary to, and thus to bind to, an RNA sequence unique to a particular cancer cell—say, the cells of a glioblastoma, an aggressive brain tumor. In order to bind to that cancer mutation, the RNA hairpin must open—changing the molecule from one form into another—which, in turn, exposes a sequence that can spontaneously bind to the second type of RNA hairpin. The opening of the second hairpin then reveals a sequence that binds to the first type of hairpin, and so on.

In this way, detection of the RNA cancer marker triggers the self-assembly of a long double-stranded RNA polymer. As part of an innate antiviral immune response, human cells defend against infection using a protein called protein kinase R (PKR) to search for long double-stranded viral RNA, which should not be present in healthy human cells. If PKR indeed detects long double-stranded RNA within a cell, the protein triggers a cell-death pathway to eliminate the cell. "The small conditional RNAs trick cancer cells into self-destructing by selectively forming long double-stranded RNA polymers that mimic viral RNA," says Pierce. "There is, however, no virus."

Pierce and his colleagues tested the process on lab-grown human cells derived from three types of cancers: glioblastoma, prostate carcinoma, and Ewing's sarcoma (a type of bone tumor). "We used three different pairs of small conditional RNAs," with each pair designed to recognize a marker found in one of the three types of cancer, he explains. "The molecules caused a 20- to 100-fold drop in the numbers of cancer cells containing the targeted RNA cancer markers, but no measurable reduction in cells lacking the markers." For example, he explains, "drug 1 killed cancer 1 but not cancers 2 and 3, while drug 2 killed cancer 2 but not cancers 1 and 3, and drug 3 killed cancer 3 but not cancers 1 and 2."

"Conceptually," Pierce says, "small conditional RNAs provide a versatile framework for diagnosing and treating disease one cell at a time within the human body. However," he notes, "many years of work remain to establish whether the conceptual promise of small conditional RNAs can be realized in human patients."

The other coauthors of the paper, "Selective cell death mediated by small conditional RNAs," are Caltech research scientist Suvir Venkataraman and former Caltech graduate students Robert M. Dirks and Christine T. Ueda. The work was funded by the National Cancer Institute, the Elsa U. Pardee Foundation, the National Science Foundation's Molecular Programming Project, the Caltech Center for Biological Circuit Design, the Caltech Innovation Initiative, the Beckman Institute at Caltech, and a Caltech grubstake fund.

Visit the Caltech Media Relations website at http://media.caltech.edu.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>