Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calcium in the nucleus renders neurons chronically sensitive to pain

22.04.2013
Stronger networking of neurons in the spinal cord promotes pain memory: Researchers at Heidelberg University Hospital and Heidelberg University Hospital publish findings in Neuron

Heidelberg pharmacologists and neurobiologists have discovered a key mechanism for the origin of chronic pain. In patients with persistent pain, calcium in the neurons ensures that these cells establish more contact to other pain-conducting neurons and react more sensitively to painful stimuli on a long-term basis. The identification of these changes in the spinal cord explains for the first time how the pain memory is formed. The results, which were published in the journal Neuron, have opened up new prospects for treating chronic pain.


More networking than is needed: During long-term pain, calcium in the nucleus of neurons ensures that they establish more contacts to other pain-conducting neurons. This discovery by Heidelberg researchers explains how the pain memory is formed in the spinal cord. The image shows offshoots of neurons (red and blue) with the node-like contact sites (synapses).
Photo: Heidelberg University Hospital

The comprehensive research project is a joint achievement of the working groups led by Prof. Rohini Kuner, Director of the University of Heidelberg’s Deaprtment of Pharmacology, and Prof. Hilmar Bading, Director of the University of Heidelberg’s Interdisciplinary Center for Neurosciences (IZN).

Persistent severe pain, such as pain caused by chronic inflammation, nerve injuries and damage, herniated disks or tumors, often leaves its mark on the nervous system. Even if the original trigger has healed, minor stimuli such as brushing against the skin can already call up the former pain state, since the body has established a “pain memory.” To date, no satisfactory treatment has been available for patients with chronic pain, which affects several million people in Germany.

Blocking calcium in the cell nucleus prevents a pain memory from developing

The network of neurons in the body translates painful stimuli such as heat, cold, strong pressure or injuries into electrical signals which are conducted via the spinal cord to the brain and are perceived as pain there. In the case of chronic pain, the neurons in the spinal cord that transmit the pain are activated by weak signals themselves. They amplify the signals and transmit them to the brain as a pain stimulus. “Our research work performed in recent years has taught us a great deal about how neurons in the injured tissue are sensitized and then modify their activity,” explained Prof. Kuner. “However, these rapid and temporary processes cannot explain the long-lasting nature of chronic pain.”

The team led by Prof. Kuner and Prof. Bading discovered the solution to the enigma in the form of a universal neurotransmitter required by the neurons for every signal transmission: calcium. When an electrical signal arrives, the neurons in the spinal cord take up calcium from their environment and, in so doing, are activated. The researchers discovered that when patients have very strong or persistent pain, so much calcium enters the cells that it is transported into the cell nucleus, which is otherwise not the case. Once there, it influences the manner in which the areas of the genetic material (genes) are activated or deactivated. Mice in which the effect of the calcium in the cell nucleus is blocked in the neurons did not develop hypersensitivity to painful stimuli or a pain memory despite chronic inflammation.
Genes regulated by calcium are the key to chronification

“These genes regulated by calcium in the spinal cord are the key to the chronicity of pain, since they can trigger permanent changes,” said Prof. Kuner confidently. One of these changes was a family of genes (complement system) which previously had only been linked to inflammatory processes of the immune system. In the spinal cord neurons, these genes ensure that the processes form only a certain number of contact sites (synapses) to other neurons. In this way, the networking and, in turn, the intensity of the signal transmission is limited. Laboratory tests on neurons demonstrated that if the complement system is deactivated by calcium, additional synapses are formed, and the cell becomes more sensitive. “This structural change in the cell contacts can explain the permanent nature of a number of pain disorders,” said Kuner.
“Calcium signals in the neuronal nucleus are becoming increasingly significant for controlling brain functions. They are a type of universal switch that is always used when brain activity, e.g., during learning processes, leads to the development of long-term memory,” explained Prof. Bading. “Now our study is demonstrating that the same switch can also convert pain to a chronic state.” These findings and the identification of key genes, whose production is triggered by the nuclear calcium signal, offer new starting points for preventing the genesis of chronic pain in the future.

Literature:
Manuela Simonetti, Anna M. Hagenston, Daniel Vardeh, H. Eckehard Freitag, Daniela Mauceri, Jianning Lu, Venkata P. Satagopam, Reinhard Schneider, Michael Costigan, Hilmar Bading, Rohini Kuner: Nuclear Calcium Signaling in Spinal Neurons Drives a Genomic Program Required for Persistent Inflammatory Pain. Neuron, Volume 77, Issue 1, 43-57, 9 January; 2013; dx.doi.org/10.1016/j.neuron.2012.10.037

More information is available on the Web:
Institute of Pharmacology: http://www.medizinische-fakultaet-hd.uni-heidelberg.de/index.php?id=102627&L...
Research Group Prof. Dr. Rohini Kuner: http://www.medizinische-fakultaet-hd.uni-heidelberg.de/index.php?id=107599&L...
Interdisciplinary Center for Neurosciences Heidelberg (IZN): http://www.uni-heidelberg.de/izn/

Contact:
Professor Dr. Rohini Kuner
Institute of Pharmacology
University of Heidelberg
phone: ++49 6221 / 54 82 89 or 54 82 47
email: rohini.kuner@pharma.uni-heidelberg.de

Professor Dr. Hilmar Bading
Interdisciplinary Center for Neurosciences Heidelberg
University of Heidelberg
phone: ++49 6221 / 54 82 18
Email: hilmar.bading@uni-hd.de

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 118,000 patients are treated on an inpatient basis and around 1.000.000 cases on an outpatient basis in more than 50 clinics and departments with 2,200 beds. Currently, about 3,500 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Director, Corporate Communication/Public Relations
University Hospital and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs@med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>