Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM researchers find potential key to halt progression, reverse damage from emphysema

03.09.2012
A study led by researchers at Boston University School of Medicine (BUSM) has shown that a compound used in some skin creams may halt the progression of emphysema and reverse some of the damage caused by the disease.

When the compound Gly-His-Lys (GHK) was applied to lung cells from patients with emphysema, normal gene activity in altered cells was restored and damaged aspects of cellular function were repaired.

The study, which is published in BioMed Central's open access journal Genome Medicine, also demonstrates the potential impact of using genomic technologies to identify new possible treatments for diseases using existing drugs and compounds.

Chronic obstructive pulmonary disease (COPD) is a chronic, progressive lung disease that comprises emphysema, small airway obstruction and/or chronic bronchitis leading to the loss of lung function. Tobacco smoke and other irritants cause oxidative stress and chronic inflammation, which over time destroys lung alveolar cells and results in emphysema. Without these cells, the lungs are not able to efficiently exchange oxygen for carbon dioxide, causing shortness of breath and low blood oxygen levels. According to the National Institutes of Health's National Heart, Lung and Blood Institute (NHLBI), COPD is the third leading cause of death in the United States and results in approximately 120,000 deaths each year. While there are treatments and lifestyle changes that can help people cope with COPD, there currently is no cure and there are no effective therapies to reduce the rate of lung function decline that occurs as the disease progresses.

"Given the high costs, both direct and indirect, associated with COPD, there is an urgent need to identify novel approaches to treat the disease," said Avrum Spira, MD, MSc, Alexander Graham Bell professor of medicine and chief of the division of computational biomedicine at BUSM, who was one of the study's senior leaders. Spira also is a physician in the pulmonary, critical care and allergy department at Boston Medical Center.

Researchers took cells from lungs donated by patients undergoing a double lung transplant because their lungs were irrevocably damaged by COPD and found 127 genes had changes in activity as disease severity increased within the lung. The genes that showed increased activity included several that are associated with inflammation, such as those involved in signalling to B-cells (the immune system cells that make antibodies).

In contrast, the genes involved in maintaining cellular structure and normal cellular function, along with the growth factors TGFâ and VEGF, were down-regulated and showed decreased activity. Genes that control the ability of the cells to stick together (cell adhesion), produce the protein matrix that normally surrounds the cells and promote the normal association between lung cells and blood vessels were among the genes in this category.

Using genomic technologies and computational methods, the researchers identified genetic activity defects that occur as emphysema progresses and matched these defects with compounds that could reverse the damage. "Our study results showed that the way genes were affected by the compound GHK, a drug identified in the 1970s, was the complete opposite of the pattern we had seen in the cells damaged by emphysema," said Marc Lenburg, PhD, associate professor in computational biomedicine and bioinformatics at BUSM and one of the study's senior authors.

"What got us especially excited was that previous studies had shown that GHK could accelerate wound repair when applied to the skin," said Joshua Campbell, PhD, a post-doctoral fellow working with Spira and Lenburg who served as the study's first author. "This made us think that GHK could have potential as a therapy for COPD."

"When we tested GHK on cells from the damaged lungs of smokers with COPD, we saw an improvement in the structure of their actin cytoskeleton and in cell adhesion, especially to collagen," said James Hogg, MD, from the University of British Columbia and one of the study's senior authors. "GHK also restored the ability of cells to reorganize themselves to repair wounds and construct the contractile filaments essential for alveolar tissue repair."

GHK is a natural peptide found in human plasma, but the amount present decreases with age. While more testing needs to be done on its effects in COPD, these early results are very promising. Therapeutic studies with GHK in animal models of COPD are now underway with the ultimate goal of moving this compound into clinical trials. As more gene activity signatures are discovered, this method of matching drug to disease may provide a rapid method for discovering potential uses for existing drugs and compounds.

"Beyond the identification of a potential new COPD drug, the research team developed a cost-effective approach to study COPD at the molecular level across the entire lung, and then screen potential drug candidates," said James Kiley, PhD, director of the NHLBI's Division of Lung Diseases, who supported this work. "This work demonstrates the potential of using genomics data to drive clinical research."

Research reported in this published article was supported by the NHLBI under award number R01 HL095388 and through the National Institutes of Health under award number UL1 TR000157 (Boston University Clinical and Translational Science Institute). Researchers from the University of British Columbia, the University Medical Center Groningen and the University of Pennsylvania also collaborated on this study.

*Some material included in this press release was excerpted from Genome Medicine's press release: http://www.biomedcentral.com/presscenter/pressreleases/20120831a

Jenny Eriksen | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>