Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM investigates cellular mechanisms leading to immune response in airway epithelium

24.11.2010
Researchers from the Boston University School of Medicine (BUSM) have demonstrated that commensal species of the genus Neisseriae are low inducers of human airway epithelial cell responses as compared to the pathogenic species.

Specifically, the study indicates that a Neisserial outer membrane component appears to play a differential role in the host inflammatory responses via interaction with a receptor on the surface of human airway epithelial cells.

Paola Massari, an assistant professor in the section of infectious diseases at BUSM, is lead author of this study, which is published in the Dec. 2010 issue of the journal Infection and Immunity.

The team focused their research on Neisseria lactamica, a gram negative organism comprising both commensal and pathogenic bacteria. Neisseria meningitidis, the causative agent of meningococcal meningitis, as well as Neisseria lactamica, colonize the human nasopharynx, but only Neisseria meningitidis is pathogenic.

"We set out to understand the relationship between commensal Neisseriae organisms and the human hosts," said Massari. "Although Neisseriae organisms express mostly identical surface antigens and structures, they appear to induce different responses when they interact with the host."

To examine how the bacteria interact with human nasopharyngeal cells, Massari and her research team honed in on a bacterial surface component, the PorB porin, present in all Neisseriae organisms. After purifying the PorB, they found that the protein from the commensal bacteria induced lower levels of human airway epithelial cell activation compared to PorB purified from the pathogenic organisms.

Next, the team demonstrated that PorB from N. lactamica and PorB from N. meningitidis appear to interact with the host cell surface receptor, Toll-like receptor 2 (TLR2), in a differential manner, thus leading to different inflammatory responses in human airway epithelial cells.

"This study confirms that TLR2 signaling is essential for the activation of human airway epithelial cells," said Massari. "This is likely one of the mechanisms by which the body limits inflammation in response to colonization with harmless commensal bacteria, thus avoiding exacerbation of inflammatory responses and local chronic local inflammation.

About Boston University School of Medicine

Originally established in 1848 as the New England Female Medical College, and incorporated into Boston University in 1873, Boston University School of Medicine today is a leading academic medical center with an enrollment of more than 700 medical students and more than 800 masters and PhD students. Its 1,246 full and part-time faculty members generated more than $335 million in funding in the 2009-2010 academic year for research in amyloidosis, arthritis, cardiovascular disease, cancer, infectious disease, pulmonary disease and dermatology among others. The School is affiliated with Boston Medical Center, its principal teaching hospital, the Boston and Bedford Veterans Administration Medical Centers and 16 other regional hospitals as well as the Boston HealthNet.

Jenny Eriksen | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>