Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building Electronics From the Ground Up

16.01.2013
There’s hardly a moment in modern life that doesn’t involve electronic devices, whether they’re guiding you to a destination by GPS or deciding which incoming messages merit a beep, ring or vibration.

But our expectation that the next shopping season will inevitably offer an upgrade to more-powerful gadgets largely depends on size – namely, the ability of the industry to shrink transistors so that more can fit on ever-tinier chip surfaces.


Chemical Communications
Nanodots of iron oxide were laid out in a highly ordered pattern without the use of templates. The average diameter of the particles was 25 nanometers, with regular spacing of 45 nm.

Engineers have been up to the task of electronics miniaturization for decades now, and the principle that the computer industry will be able to do it on a regular schedule – as codified in Moore’s Law – won’t come into doubt any time soon, thanks to researchers like the University of South Carolina’s Chuanbing Tang.

Tang is a leader in constructing miniscule structures from the bottom up, rather than the top down. Currently, modern electronics are primarily fabricated by the latter method: the smooth surface of a starting material – say, a wafer of silicon – is etched through micro- or nanolithography to establish a pattern on it. The top-down method might involve a prefabricated template, such as a photomask, to establish the pattern. But the approach is becoming more and more challenging, because reducing the size of the features on the requisite templates is getting extremely expensive as engineers work their way further down the nanoscale. “Going from 500 to sub-30 nanometers is cost prohibitive for large-scale production,” said Tang, an assistant professor in the department of chemistry and biochemistry in USC’s College of Arts and Sciences.

As a chemist, Tang uses a bottom-up approach: he works with the individual molecules that go onto a surface, coaxing them to self-arrange into the patterns needed. One established method of doing this involves block copolymers, in which a polymer chain is made up of two or more sections of different polymerized monomers.

If the different block sections are properly designed, the blocks will self-aggregate when placed on a surface, and the aggregation can be harnessed to create desirable patterns on the nanoscale without the need for any templates. Di-block copolymers of poly(ethylene oxide) and polystyrene, for example, have been used to construct highly ordered arrays of perpendicular cylinders of nanoscale materials. Solvent evaporation, or annealing, of these polymers on surfaces exerts an external directional field that can enhance the patterning process and create nearly defect-free arrays.

Tang’s laboratory just published a paper for the special “Emerging Investigators 2013” issue of the journal Chemical Communications that takes this method to a new level. Working together with graduate student Christopher Hardy, Tang led a team that fabricated nanoparticles of pure, crystalline iron oxide with controlled size and spacing on silicon wafers by covalently incorporating a ferrocene moiety into a tri-block copolymer.

Incorporating metals into nanoscale designs is crucial for fabricating electronic devices, and Tang’s method is a step forward for the field. Because ferrocene is covalently bonded to the block copolymer, there is no need for a complexation step to add a metal-containing compound to the surface – a burdensome requirement of most previous methods. Moreover, their technique is a step beyond related polymer systems that contain covalent ferrocenylsilane linkages, in which removal of the organic components leaves behind silicon oxide as an impurity in the metal oxide.

The technique is a promising addition to the available tools for addressing the chronic need to decrease the size of electronic components. “The industry won’t replace top-down methods,” Tang said, “but they plan to use bottom-up together with the existing top-down methods soon.”

There’s versatility in the technique as well. “Here we use a ferrocene-containing polymer, which we convert into the inorganic iron oxide. But if we replace the ferrocene in the polymer with carbon precursor, we could make a perpendicular carbon nanorod, which would have a lot of potential uses,” Tang said. “Or we can incorporate a semi-conducting polymer, like polythiophene, which would be very useful in solar cell applications.”

The work was supported by Semiconductor Research Corporation (Task ID 2222.001) and National Science Foundation (CHE-1151479).

Steven Powell | Newswise
Further information:
http://www.sc.edu

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>