Building bridges within the cell — using light

Proteins are the building blocks of the 'bridge' between organelles in the cell. Credit: Yun Huang and Yubin Zhou

Each cell in the body is made up of a number of tiny sealed membranous subunits called organelles, and they send things like lipids back and forth to allow the cell to function. A process called membrane tethering is responsible for bridging the gap between organelles at a specialized subcellular zone called membrane contact sites and, now, researchers have a way to manipulate this tethering.

“For the first time, we're able to build bridges of different lengths in living cells to connect subcellular compartments with great temporal and spatial control,” said Yubin Zhou, PhD, associate professor at the Texas A&M Institute of Biosciences and Technology and principal investigator on this work, which was the cover story this week in the journal Chemical Science.

Zhou's method, a variant of which he used in previous research to control immune cells, is called optogenetics, and involves using light to control the function of proteins. In this case, the proteins are the building blocks of the bridge between organelles, and the length of that bridge–even if the difference is only in nanometers–can influence the function of the cell because it is over the bridge that organelles exchange critical building blocks such as lipids and send messengers such as calcium ions.

When this process is disrupted, there can be devastating consequences like cell death and metabolic dysfunction. “The optogenetic tools developed in the study might hold great promise to rescue these detrimental conditions with a simple pulse of light,” Zhou said. “The potential impact is likely to be broad and profound, in that it allows the use of non-invasive light, for the first time, to study and manipulate these subcellular structures that are considered to be one of the most challenging and elusive in mammalian cells.”

Although this initial work focused on the connection between the plasma membrane of the cell and an organelle called the endoplasmic reticulum, future work will be broadened to other places of connection, such as between the endoplasmic reticulum and the mitochondria.

“These tools will furnish untapped potentials for scientists to conveniently rewire cell signaling, control protein-lipid associations, perturb intracellular communication among organelles and tweak the motion and behavior of proteins embedded within biological membranes,” Zhou said. “It opens untold new research areas, and we believe this work could have wide implications for multiple disciplines.”

###

The study was done in collaboration with the laboratory of Yun Huang, PhD, assistant professor at the Texas A&M Institute of Biosciences & Technology, who researches cancer.

Media Contact

Holly Shive
hshive@tamhsc.edu
979-436-0613

http://www.tamu.edu 

Media Contact

Holly Shive EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors