Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building block of "happiness hormone" is key to controlling immunity

08.11.2018

Scientists at IMBA - Institute of Molecular Biotechnology at the Austrian Academy of Sciences - together with the Boston Children's Hospital at Harvard, demonstrate a completely new way of combating autoimmune diseases and cancer.

For decades researchers have been trying to unravel the complex mechanisms of our immune system. Insights gathered have paved the way for a new era of cancer therapy. If our immune system is activated, the body is able to defend itself against cancer cells and invading pathogens. This approach has revolutionized cancer therapy and resulted in this year's Nobel Prize for Medicine.


Tetrahydrobiopterin, or BH4, is needed to produce the “happiness hormone” serotonin or dopamine. Also, it critically controls the growth of T-cells by regulating iron and mitochondrial metabolism.

IMP/IMBA Graphics


By modulating the pathway which produces BH4 scientists can in essence control T cell responses.

IMP/IMBA Graphics

An international research team led by Josef Penninger at IMBA, Vienna, and Clifford Woolf of the Boston Children's Hospital, Harvard University, now report entirely novel insights into the biology and activation of immune T cells. The authors also show that this new pathway for T cell activation is druggable – to either block multiple autoimmune diseases or to enhance anti-cancer immunity.

The surprising link between neurobiology and immunity

The researchers surprisingly found that a specific type of immune cells in our body, called T cells, require a molecule that was long known to play an important role in the nervous system. In the brain, this molecule, known as tetrahydrobiopterin, or BH4, is needed to produce the “happiness hormone” serotonin or dopamine." T cells are the soldiers of our immune system and patrol our body “seeking out” pathogen-infected cells or aberrant cells that could become tumors. As a result of such encounters, the T cells are activated, they proliferate and enter “combat mode” to fight danger tour body. A reoccurring problem: Activated T cells can be directed against the body's own cells – leading to allergic reactions and autoimmune diseases such as colitis, asthma, multiple sclerosis, arthritis, or certain skin diseases.

In the last years, the critical pathways of T cell activation have been elucidated, allowing for the developmental of multiple groundbreaking therapies. The international research team now reports in Nature that BH4 critically controls the growth of T cells by regulating iron and mitochondrial metabolism. This also now explains the old findings that people with iron deficiency or anemia often suffer from immune problems.

“One fascinating feature of our discovery is that a system that is actually known in neurobiology for decades can play such a key role in T cell biology," says Josef Penninger, founding director of IMBA. "This finding links two completely different systems in our body and is unlike previously known 'immune checkpoints'. For me as a trained immunologist who was involved in defining some of the key signaling pathways in T cells, like CTLA4, it was truly amazing to find such a critical new player in T cell biology – and since it regulates not early activation but how T cells grow, the possibilities for medical applications are extremely varied: from controlling autoimmune diseases, asthma and allergies to having a new way to trigger anti-cancer immunity! "

Clinical Hattrick: therapies for autoimmune diseases, allergies, and cancer

"Autoimmune conditions and allergies are among the most common diseases worldwide and therapies are urgently needed. In this context, our discovery can be very useful. By inhibiting BH4 we can “tame” these auto-aggressive T cells so that they do not destroy healthy tissue or cause chronic inflammation, " says Shane Cronin "says Shane Cronin, postdoctoral fellow at the IMBA and Harvard as well as first author of the current publication in Nature. Together with Clifford Woolf of Harvard Medical School, and Kai Johnsson, Max Planck Institute for Medical Research, Heidelberg, the researchers developed a novel drug called QM385, which inhibits BH4 production for future clinical use.

Using multiple models, treatment of mice with the BH4 blockers indeed “calms” auto-aggressive T cells and abrogates T cell-mediated allergic inflammation and gut and brain autoimmunity. “I am very optimistic that we have the means to introduce a new and highly effective treatment strategy for multiple allergic and autoimmune diseases” says Clifford Woolf. “The beauty of the approach is that instead of targeting a single cytokine or class of T cells we halt proliferation in all disease related T cells and this could translate into activity across multiple diverse clinical conditions.”

BH4 is also an important candidate for future cancer immunotherapies, as activated T cells sense and fight cancer cells. Analyzing mice, the researchers discovered that higher levels of BH4 activate proliferation of T cells, causing tumors to shrink.

Intriguingly, the research team now found that kynurenine, a molecule that can turn off the immune system in tumors, blocks T cell growth – which can be overcome by BH4, allowing T cells to escape local immunosuppression in the tumor environment. "We studied BH4 in pain perception earlier. This is a great example how different fields of research, working together, can make novel discoveries at the interfaces of different kinds of biology”’ says Harvard’s Clifford Woolf.

“In our case, a molecule recognized as essential for many functions in neurobiology, is now identified as key for completely novel therapies – when we dial it down we block T cell proliferation in autoimmune diseases or asthma. When we dial it up, we can trigger T cells to grow and attack tumor cells, even under adverse conditions – and hence have discovered a new pathway to induce anti-cancer immunity, one that should greatly expand the effectiveness of the check-point inhibitors currently used".

Since the researchers developed a potent and orally available inhibitor, this new concept can soon be tested in human patients.

Original Publication:
“The metabolite BH4 controls T cell proliferation in autoimmunity and cancer”, Cronin et al. Nature, 2018, DOI:10.1038/s41586-018-0701-2

About IMBA
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics, RNA biology and stem cell technologies. IMBA is located at the Vienna BioCenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a basic research institute of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research.

This research project is an international collaboration with contributions by multiple institutions: IMBA – Institute of Molecular Sciences of the Austrian Academy of Sciences –, Department of Neurobiology, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany, Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Austria, Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford, U.K., Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, , U.K., Division of Gastroenterology and Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS), Harvard University, Boston, MA, USA, LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil. IMP - Research Institute of Molecular Pathology, Vienna, Austria, Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany, Department of Neurosciences, Centre de recherche de CHU de Québec - Université Laval, Québec QC Canada, Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec QC Canada, Karolinska Institute, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden, Neurosurgery Department, Johns Hopkins School of Medicine, Baltimore, USA, Apeiron Biologics AG, Vienna, Austria, Quartet Medicine, Cambridge, USA, Department of Anesthesia, Harvard Medical School, Boston, USA; Boston Children's Hospital, Boston, USA, Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada, Max-Planck Institute for Medical Research, Department of Chemical Biology, Heidelberg, Germany

Wissenschaftliche Ansprechpartner:

Mag. Ines Méhu-Blantar
Senior Communications Manager
IMBA – Institute of Molecular Biotechnology GmbH
Dr. Bohr-Gasse 3, 1030 Vienna
M: +43 664 808473828
E.: ines.mehu-blantar@imba.oeaw.ac.at

www.imba.oeaw.ac.at

Originalpublikation:

“The metabolite BH4 controls T cell proliferation in autoimmunity and cancer”, Cronin et al. Nature, 2018, DOI:10.1038/s41586-018-0701-2

Weitere Informationen:

http://www.imba.oeaw.ac.at
http://www.imba.oeaw.ac.at/about-imba/information-material-download/

Mag. Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Researchers find new mutation in the leptin gene
24.06.2019 | Texas Biomedical Research Institute

nachricht Straight to the heart
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>