Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bug splatter on your car's windshield is a treasure trove of genomic biodiversity

09.10.2009
If you have ever taken a long road trip, the windshield of your car will inevitably be splattered with bugs by the time you arrive at your destination. Could the DNA left behind be used to estimate the diversity of insects in the region?

In a study published online in Genome Research, scientists answered this question, utilizing a novel analysis pipeline that will accelerate future studies of biodiversity.

Recent advances in DNA sequencing technology are allowing researchers to investigate genomic questions of a scale and depth not previously possible. Among the fields benefiting from these new innovations is metagenomics, an approach applying DNA-sequencing technology directly to environmental samples. Scientists can now estimate biodiversity by sequencing DNA collected nearly anywhere, from extreme environments to your own skin, and the possibilities seem limitless.

Metagenomics has traditionally been applied to microbial samples, but investigators led by Anton Nekrutenko of Penn State University believe that this tactic can be utilized in studies of biodiversity of higher organisms. However, they also understand the complex computational infrastructure needed to interpret the massive amounts of data typical of these studies in an accurate and reproducible manner. "Metagenomics is still a 'soft science,'" said Nekrutenko, "where precise identification of species abundance in complex samples is very, very challenging."

To meet this challenge, the group developed the Galaxy metagenomic pipeline, a powerful analysis approach that incorporates all steps of analysis, from handling raw sequencing data to the drawing of evolutionary trees. Nekrutenko and colleagues then put the pipeline to the test by conducting one of the first metagenomics studies of eukaryotic biodiversity.

The group set out to collect a metagenomic sample with the goal of estimating how many species of insects resides in our immediate surroundings. To gather genetic material, they utilized a simple but effective collection method – the front bumper of a moving vehicle. Two samples of bug splatter were collected, the first after driving from Pennsylvania to Connecticut, and the second after traveling from Maine to New Brunswick, Canada.

After sequencing DNA from the splatter samples, the research team used their metagenomic pipeline to address the question of how many species inhabit the regions sampled on the trips. The group accurately identified sequences corresponding to a number of insect taxa amongst other sequences, primarily matching bacteria. Furthermore, they found significant differences in diversity between the first and second trips.

The authors note that there are likely many other insect species that went undetected, as the diversity of organisms represented in sequence databases is currently limited. However, with advances in sequencing technology rapidly driving down costs, the genomic catalog of species diversity is expected to grow rapidly. Together with advanced analysis methods such as the Galaxy pipeline, comprehensive biodiversity studies of all of the life around us are within reach.

Scientists from the University of California San Diego (San Diego, CA), Penn State University (University Park, PA), and Emory University (Atlanta, GA) contributed to this study.

This work was supported by a Beckman Foundation Young Investigator Award, the National Science Foundation, Penn State University, the Huck Institute for the Life Sciences, Emory University, and the Pennsylvania Department of Health.

Media contacts: Anton Nekrutenko, Ph.D. (anton@bx.psu.edu) has agreed to be contacted for more information.

Interested reporters may obtain copies of the manuscript from Peggy Calicchia, Editorial Secretary, Genome Research (calicchi@cshl.edu; +1-516-422-4012).

About the article: The manuscript will be published online ahead of print on October 9, 2009. Its full citation is as follows: Kosakovsky Pond S, Wadhawan S, Chiaromonte F, Ananda G, Chung W, Taylor J, Nekrutenko A, The Galaxy Team. Windshield splatter analysis with the Galaxy metagenomic pipeline. Genome Res doi:10.1101/gr.094508.109.

About Genome Research:

Launched in 1995, Genome Research (www.genome.org) is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.

About Cold Spring Harbor Laboratory Press:

Cold Spring Harbor Laboratory is a private, nonprofit institution in New York that conducts research in cancer and other life sciences and has a variety of educational programs. Its Press, originating in 1933, is the largest of the Laboratory's five education divisions and is a publisher of books, journals, and electronic media for scientists, students, and the general public.

Genome Research issues press releases to highlight significant research studies that are published in the journal.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu
http://www.genome.org

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>