Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Bubble-Rafting Snails, the Eggs Came First

12.10.2011
It's "Waterworld" snail style: Ocean-dwelling snails that spend most of their lives floating upside down, attached to rafts of mucus bubbles.

Scientists have known about the snails' peculiar lifestyle since the 1600s, but they've wondered how the rafting habit evolved. What, exactly, were the step-by-step adaptations along the way?


Denis Riek
Two female bubble-rafting violet snails, Janthina exigua. Scientists believe the bubble float evolved from an ancestral egg mass. Egg capsules are attached to the underside of the floats.
Current Biology (Oct. 11, 2011)

University of Michigan graduate student Celia Churchill and coauthors believe they've found the answer to that intriguing question. In a paper published in the Oct. 11 issue of Current Biology, they show that bubble rafting evolved by way of modified egg masses.

The bubble-rafting snails, members of the family Janthinidae, secrete mucus from their "foot," a broad, muscular organ at the base of the snail's body. But instead of using slime to get around or to communicate chemically, as other types of snails do, they trap air inside quick-setting mucus to make bubbles that glom together and form rafts on which the snails spend the rest of their lives.

"We had a pretty good idea that that janthinids evolved from snails that live on the sea floor," Churchill said. The question was, which specific group of snails gave rise to the janthinids, and how did the janthinid lineage make the transition from bottom dwellers to surface surfers?

To find the answer, Churchill and coauthors first sequenced DNA from janthinids and other snail families thought to be closely related to them and used techniques of molecular phylogenetics to identify the ancestral lineage. They discovered that the rafting snails are descendents of sea-floor snails called wentletraps that parasitize corals and sea anemones. The researchers then asked which specific habits of wentletraps might have morphed over time into raft-building.

"We thought of two possibilities," said Churchill, who did the work under the direction of Diarmaid Ó Foighil, a professor of ecology and evolutionary biology and a curator of mollusks at the U-M Museum of Zoology. "The first was that bubble rafting evolved from juvenile droguing." In many species of marine snails, the juveniles produce a mucus thread called a drogue that helps them drift from place to place like a kite on a string. Adding air-filled mucus bubbles to the drogue thread could result in something resembling a bubble raft.

The other possibility was that rafts represent modified egg masses. In wentletraps, which belong to the family Epitoniidae, females remain on their hosts, attached by stretchy mucus threads to tethered egg masses. These egg masses typically have egg capsules in various stages of development, from newly encased embryos to empty husks, and the researchers reasoned that in an intertidal species, the empty husks might trap air, making the egg mass and attached female temporarily buoyant. As in the drogue scenario, adding mucus-filled bubbles to this ephemeral raft could lead to development of permanent bubble rafts. Either way, getting to the surface would give the snails access to a completion-free food source: floating jellyfish.

To know which scenario was correct, the researchers needed to find a transitional form---a janthinid with characteristics that fall somewhere between the bottom-dwelling epitoniids and the permanently-rafting janthinid known as the common purple snail (Janthina janthina). They got a break when they received a preserved specimen of the rare rafting snail Recluzia from Australia.

"I started to dissect it, and when I pulled the float away I noticed that there were tiny Recluzia on the float and egg capsules of the large female," Churchill said. These hitchhiking juveniles suggested a life history consistent with the egg mass hypothesis. They also suggested an explanation for how the rare Recluzia manages to survive.

"Immediately we started thinking about dwarf males, which are known from a variety of molluscan groups," Churchill said. "If Recluzia has a life history strategy where males remain with females, that might explain how Recluzia can persist at such low densities. When there aren't very many females, remaining with one of them may be the best mating strategy for a male."

The hitchhiking snails were so tiny it was impossible to confirm that they were male, but a recent photograph taken by another researcher clearly shows a larger snail, presumably male, associated with the float of a large female.

Was Recluzia truly the transitional form the researchers were seeking? Or might the transitional form be a species of Janthina, whose juveniles build their own floats, rather than hitchhiking on females' floats---a life history more in line with the juvenile droguing hypothesis? To answer that question, Churchill compared physical characteristics of Recluzia and Janthina with those of the ancestral epitoniids. Recluzia, she found, shares six

characteristics with epitoniids; Janthina has none. This finding points to Recluzia as the transitional form, strongly supporting the egg mass hypothesis.

Churchill and colleagues went on to reconstruct the path that led from egg mass to bubble raft. In the scenario they propose, the ancestors of janthinids lived on the ocean floor, and females formed tethered egg masses with associated males, just as a number of present-day epitoniids do. The egg mass then became modified for buoyancy, resembling a typical Recluzia float, which serves as raft, egg-storage area and platform for juveniles. In the next step, all individuals began making their own floats, so the hitchhikers were lost, but the floats continued to serve as rafts and (in females) egg mass carriers. The present-day species Janthina cf. prolongata and Janthina exigua exemplify this lifestyle.

Finally, the rafts lost their egg-carrying function altogether and came to serve only as floatation devices, as they do in Janthina janthina, in which the female doesn't produce an egg mass at all, but broods the eggs inside her body until they're ready to hatch.

Churchill is working with the Woods Hole Oceanographic Institute's Sea Education Association to create student SEA Semester projects aimed at learning more about the ecology and behavior of rafting snails.

In addition to Churchill and Ó Foighil, the paper's authors include Ellen Strong at the Smithsonian Institution and Adriaan Gittenberger at Leiden University in the Netherlands.

Funding was provided by the Smithsonian Institution, the National Science Foundation and the National Geographic Society.

More information:
Celia Churchill: www.lsa.umich.edu/eeb/directory/graduates/celiakc/default.asp
Diarmaid Ó Foighil: www.lsa.umich.edu/eeb/directory/faculty/diarmaid/default.asp
Current Biology: www.cell.com/current-biology/

Jim Erickson | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>