Brothers in arms

A joint venture from researchers from the Helmholtz-Centre for Infection Research (HZI) in Braunschweig, the Otto-von-Guericke-University in Magdeburg, and the Karolinska institute in Sweden have taken an in-depth look at the connection between flu infection and pneumonia. Their results, recently released in the scientific journal “PLoS One”, have disproven a common theory about flu-like pneumonia.

Some viral infections trigger a decrease of immune cells in the blood – a so-called “lymphopenia”. The reasons behind it and whether this is the case with influenza are unknown. To investigate the latter, HZI researchers infected mice with flu viruses and measured the amount of immune cells in the animal's blood every day. Some days later, flu-infected mice received a dosage of pneumonia bacteria usually harmless for healthy mice. While the flu-infected mice did develop a superinfection & subsequently died, surprisingly, they were not suffering from lymphopenia. The healthy, non-flu-infected mice defeated the bacteria successfully and recovered.

To discover whether a lack of immune cells encourages an infection with pneumonia bacteria in general, an artificial drug-induced lymphopenia was established in the mice. Without infecting these lymphopenic mice with flu viruses, they received pneumonia bacteria. Despite a severe lack of immune cells, the mice recovered completely.

With these results, the researchers could show that influenza facilitates and intensifies an infection from pneumonia bacteria, while disproving the common idea that this is caused by a lack of immune cells. “This result was an enormous surprise for us because it directly contradicts widespread assumptions”, says Sabine Stegemann, researcher in the groups “Immune regulation” at the HZI and “Molecular Immunology” at the Otto-von-Guericke-University in Magdeburg.

“Now we want to understand the reasons for the increased susceptibility”, says Matthias Gunzer, head of the group in Magdeburg. “It could be interplay of weakened mucous membranes and scavenger cells that induce ideal conditions for pneumonia bacteria to create a deadly lung infection. Another reason may be a reaction of the host immune system: It disables hyperactive flu-fighting immune cells to inhibit destruction of healthy lung tissue. “The immune system keeps itself under control and that makes it easy for pneumonia bacteria to infect the lung”, says Gunzer.

Article: Stegemann S, Dahlberg S, Kröger A, Gereke M, Bruder D, et al. 2009 Increased Susceptibility for Superinfection with Streptococcus pneumoniae during Influenza Virus Infection Is Not Caused by TLR7-Mediated Lymphopenia. PLoS ONE 4(3): e4840. doi:10.1371/journal.pone.0004840

Media Contact

Dr. Bastian Dornbach Helmholtz Association

More Information:

http://www.helmholtz-hzi.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors