Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in tuberculosis research: genetic pathogen code is the key for optimum treatment

24.06.2015

Scientists from the Research Center Borstel, the German Center for Infection Research, the Oxford Biomedical Research Centre and the South African National Institute for Communicable Diseases have developed a new genetic method, with which they can not only predict which antibiotics result in resistance, but with which they can also say which compounds are effective against the respective tuberculosis (TB) pathogens. The results will be published on Wednesday, June 24 in the online edition of the international journal The Lancet Infectious Diseases.

Detection of TB pathogens and the precise determination of antibiotic resistance was, until now, only done with culture procedures. This method requires up to six weeks until a result is available. Valuable time, which frequently delays effective treatment.


The entire genome at a glance: Thomas Kohl from the Research Center Borstel preparing samples for Whole Genome Sequencing.

Photo/Copyright: German Center for Infection Research/scienceRELATIONS

The procedures using cultures are also relatively prone to error. They need to be very precise, however, in order to obtain reliable and comparable results, and such ideal lab conditions are also usually not available in countries with high tuberculosis rates, in particular. Even the molecular-diagnostic quick tests used over the last 20 years can only provide information on a limited number of mutations and the resistances which result from them.

"We wanted to go one step further and give therapeutic pointers on which combinations of antibiotics are suitable for treating a certain pathogen", summarized Professor Stefan Niemann, Head of the Molecular Mycobacteriology research group at the Research Center Borstel and member of the Cluster of Excellence Inflammation at Interfaces, to describe the research approach. "We are moving from 130 years of TB cultivation towards a new, digital era in microbiology."

To do so, the team investigated the genomes from around 3500 strains of TB, using the Whole Genome Sequencing method (WGS). The researchers concentrated on changes to the genome which they could connect to antibiotic resistance and sensitivity.

"We have established a kind of dictionary for mutations in the genomes of TB pathogens", explained Niemann. "If changes to the genetic code are found in a patient isolate, then certain medications are no longer effective and should therefore not be used for treatment. This is an enormous advance in progress, particularly in terms of treating multi-resistant pathogens!"

It will take some time until the method can be applied by physicians in everyday practise. However Dr Thomas Kohl, co-author of the publication, believes that the method has great potential: "In the long term, genome analysis is significantly easier and cheaper to carry out than developing cultures. Above all, with regard to the WHO EndTB strategy, which plans to successfully end tuberculosis by 2035, these new diagnostic approaches are very important."

Tuberculosis (TB) is the most frequent deadly contagious disease worldwide. Estimates think that around one third of the world's population is infected with the pathogen. For the majority of those infected, however, tuberculosis never breaks out. Each year 9 million people contract TB - and around 1.5 million die as a result of its consequences. The ever increasing antibiotic resistances of the pathogens are an immense problem. This considerably extends the duration of treatment and causes high costs.

Original publication:
Walker, TM, Kohl, TA, Omar, SV, Hedge, J, Elias, CDO, Bradley, P, Iqbal, Z, Feuerriegel, S, Niehaus, KE, Wilson, DJ, Clifton, DA, Kapatai, G, Ip, C, Bowden, R, Drobniewski, FA, Allix-Béguec, C, Gaudin, C, Parkhill, J, Diel, R, Supply, P, Crook, DW, Smith, EG, Walker, AS, Ismail, N, Niemann, S, Peto, TEA and Modernizing Medical Microbiology (MMM) Informatics Group (2015): Whole-genome sequencing for prediction of Mycobacterium
tuberculosis drug susceptibility and resistance: a retrospective cohort study. The Lancet Infectious Diseases, http://dx.doi.org/10.1016/S1473-3099(15)00062-6 (as from June 24, 01:00 CET)

Contact:
Professor Dr Stefan Niemann
Research Center Borstel / Cluster of Excellence Inflammation at Interface s
German Center for Infection Research
Tel.: +49 (0)4537/ 188-7620
E-mail: sniemann@fz-borstel.de

Press contact:
Dr Tebke Böschen
Tel: +49 (0)431 880-4682, e-mail: tboeschen@uv.uni-kiel.de
Website: http://www.inflammation-at-interfaces.de

Britta Weller
Tel: +49 (0)4537 188-2890, e-mail: bweller@fz-borstel.de
Website: http://www.fz-borstel.de

Weitere Informationen:

http://inflammation-at-interfaces.de/en/newsroom/current-issues/breakthrough-tub...

Dr. Tebke Böschen | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>