Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in designing a better Salmonella vaccine

25.09.2018

UC Davis researchers announce in the Proceedings of the National Academy of Sciences this week a breakthrough in understanding which cells afford optimal protection against Salmonella infection--a critical step in developing a more effective and safe vaccine against a bacterium that annually kills an estimated one million people worldwide.

Professor Stephen McSorley, interim director of the Center for Comparative Medicine, led a collaborative group of scientists from the University of Melbourne, Australia, the University of Connecticut and UC Davis. They evaluated the difference between circulating and non-circulating memory T cells in providing immunity to Salmonella infection in mice models.


UC Davis researchers have made a breakthrough in understanding which cells afford optimal protection against Salmonella infection -- a critical step in developing a more effective and safe vaccine against a bacterium that annually kills an estimated one million people worldwide. This image shows Salmonella (in red) invading human cells.

Credit: Rocky Mountain Laboratories, NIAID, NIH

"What everyone has been focused on in immunology, not just in addressing Salmonella, but all infectious diseases for the past 50 years or so, has been antibody and T cell responses," McSorley said. "What hasn't been realized until very recently is there are actually two different categories of T cells--those that circulate through tissues in the body and those that never move and are known as tissue resident or non-circulating memory cells."

Since non-circulating memory T cells were discovered, McSorley said there's been a rush in different disease models to understand whether they are important or not--in cancer and infectious diseases. It seems in some models they are very important; in others, they are less so.

"It's a new cell population we haven't looked at before and they're very effective so we need to learn more about them," McSorley said. "They may be part of the answer to developing vaccines against a variety of pathogens."

The team focused on these non-circulating memory T cells to better understand how well they protected against reinfection from Salmonella Typhi, a strain that causes life-threatening enteric fever commonly in Africa and parts of Asia. Other strains of Salmonella are capable of causing gastroenetritis or invasive non-typhoidal Salmonellosis (NTS), an emerging disease in sub-Saharan Africa. Enteric fever and NTS can be fatal in 20-25 percent of infected individuals without access to medical care.

The researchers transferred circulating and non-circulating memory T cells from mice previously vaccinated into naïve mice. Thanks to fluorescent markers, they were then able to track which of the T cells offered protection against Salmonella infection.

They showed that vaccine-mediated protection requires a non-circulating population of liver memory cells that does not circulate through the rest of the body. The unexpected requirement for these liver memory T cells means that generating these cells will form the basis of future vaccines for typhoid and NTS.

Current Salmonella vaccines limited

NTS has really emerged in Africa in the last 10 years, McSorley said, mainly in young children, the elderly and HIV positive individuals--basically people with compromised immune systems. They get a strain that would normally cause gastroenteritis, but in these individuals, it causes systemic infection and can kill them.

"These forms of disease are really impactful for resource-poor communities in Asia and Africa where the vaccines are either nonexistent or terrible," McSorley said. "They are diseases of poverty."

Although there are two vaccines currently available for Salmonella, neither are practical for use in these countries and they only protect about 50 percent of people immunized.

"The goal of our lab is to understand the mechanisms of protective immunity in mice to learn tricks of the immune system and then develop a vaccine that could replicate that to use for kids and people who live in these areas," he said. "We found that you absolutely need these non-circulating T cells to protect against Salmonella. That's an important milestone because if you're going to make a vaccine, you have to know what you're trying to induce with that vaccine. Now that we know these forms of T cells exist and protect against Salmonella, the next goal is to try to develop synthetic ways to induce them to make a vaccine."

McSorley said they have some ideas about how to do that and that's where the next phase of their research is going--to try and take vaccine components in a mouse model to specifically focus on these non-circulating cells and see if they can induce them.

"If we can learn how to better induce them and if we can apply that to a new Salmonella vaccine, it should be more efficient at providing immunity than previous vaccines."

###

Coauthors include Joseph Benoun, Oanh Pham, Victoria Rudisill, and Zachary Fogassy from UC Davis's School of Veterinary Medicine; Newton Peres, Nancy Wang, Paul Whitney, Daniel Fernandez-Ruiz, Thomas Gebhardt, Sammy Bedoui and Richard Strugnell from University of Melbourne; and Quynh-Mai Pham and Lynn Puddington from the University of Connecticut.

This study was supported by grants from the NIH's National Institute of Allergy and Infectious Diseases and the National Health and Medical Research Council of Australia.

Media Contact

Andy Fell
ahfell@ucdavis.edu
530-752-4533

 @ucdavisnews

http://www.ucdavis.edu 

Andy Fell | EurekAlert!
Further information:
http://blogs.ucdavis.edu/egghead/2018/09/24/breakthrough-designing-better-salmonella-vaccine/

More articles from Life Sciences:

nachricht Study reveals profound patterns in globally important algae
21.08.2019 | Bigelow Laboratory for Ocean Sciences

nachricht Intestinal bacteria in type 2 diabetes: being overweight is pivotal
21.08.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Shape-shifting sheets

21.08.2019 | Materials Sciences

Study reveals profound patterns in globally important algae

21.08.2019 | Life Sciences

New tools to minimize risks in shared, augmented-reality environments

21.08.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>