Breakthrough in cancer vaccine research

Researchers at the University of Cambridge hope to revolutionise cancer therapy after discovering one of the reasons why many previous attempts to harness the immune system to treat cancerous tumours have failed.

New research, published today in the journal Science, reveals that a type of stromal cell found in many cancers which expresses fibroblast activation protein alpha (FAP), plays a major role in suppressing the immune response in cancerous tumours – thereby restricting the use of vaccines and other therapies which rely on the body's immune system to work. They have also found that if they destroy these cells in a tumour immune suppression is relieved, allowing the immune system to control the previously uncontrolled tumour.

Douglas Fearon, Sheila Joan Smith Professor of Immunology of the Department of Medicine at the University of Cambridge, said: “Finding the specific cells within the complex mixture of the cancer stroma that prevents immune killing is an important step. Further studying how these cells exert their effects may contribute to improved immunological therapies by allowing us to remove a barrier that the cancer has constructed.”

Vaccines created to prompt the immune system to attack cancerous cells in tumours have shown to activate an immune response in the body but have, inexplicably, almost never affected the growth of tumours. Immunologists who specialise in tumours have suspected that within the tumour microenvironment the activity of immune cells is somehow suppressed, but they have thus far been unable to fully reverse this suppression.

The new research, funded by the Wellcome Trust and the Sheila Joan Smith Professorship endowment, sheds light on why the immune response is suppressed. The Cambridge study found that at least one immune suppressive component is contained within normal tissue cells (called stromal cells) the cancer has coerced to assist its survival. The cell they studied specifically expresses a unique protein often associated with wound healing – fibroblast activation protein alpha (FAP). The FAP expressing cells are found in many cancers, including breast and colorectal cancers.

In order to determine if FAP expressing stromal cells contribute to the resistance of a tumour to vaccination, the researchers created a transgenic mouse model which allowed them to destroy cells which expressed FAP. When FAP-expressing cells were destroyed in tumours in mice with established Lewis lung carcinomas (of which only 2% of the tumour cells are FAP-expressing), the cancer began to rapidly 'die'. The Fearon lab now hopes to collaborate with scientists at the CRUK Cambridge Research Institute to evaluate the effects of depleting FAP-expressing cells in a mouse model that more closely resemble human cancer, and to examine FAP-expressing cells of human tumours.

Professor Fearon continued: “These studies are in the mouse, and although there is much overlap between the mouse and human immune systems, we will not know the relevance of these findings in humans until we are able to interrupt the function of the tumour stromal cells expressing FAP in patients with cancer.

“It should be noted, however, that the FAP-expressing stromal cell was actually first found in human cancer by Lloyd Old and his colleagues 20 years ago.”

For additional information please contact:
Genevieve Maul, Office of Communications, University of Cambridge
Tel: direct, +44 (0) 1223 765542, +44 (0) 1223 332300
Mob: +44 (0) 7774 017464
Email: Genevieve.maul@admin.cam.ac.uk
Notes to editors:
1. The paper 'Suppression of Antitumour Immunity by Fibroblast Activation Protein – á – Expressing Stromal Cells' will be published in the 05 November 2010 edition of Science.

2. The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests. www.wellcome.ac.uk

Media Contact

Genevieve Maul EurekAlert!

More Information:

http://www.cam.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors