Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaching the brain’s defense causes epilepsy

27.08.2019

Scientific study proves the relevance of glial cells for epileptic seizures and shows potential for new therapies

Epileptic seizures can happen to anyone. But how do they occur and what initiates such a rapid response? An international team of scientists led by Prof. Dr. Emre Yaksi at the Norwegian University of Science and Technology (NTNU), Norway and includes researchers from Dr. Caghan Kizil’s group at the Center for Regenerative Therapies at TU Dresden (CRTD), has discovered that failure of the so-called glial cells in the brain triggers the epileptic seizures.


Zebrafish is a widely studies model organism in many laboratories.

© Kizil Lab, CRTD


A microscopic view of a young zebrafish brain. Red indicates the glia cells and greens are neurons.

© Emre Yaksi Lab, NTNU

The study investigated epileptic seizures in zebrafish - a widely used model organism for modelling human brain physiology. Zebrafish contains the same cell types that are present also in human brains.

Two of these cell types are glia and neurons. Neurons are primarily involved in transmitting signals. The main functions of Glial cells include maintaining a balanced environment and providing support for the neurons, assisting the immune system and increasing the speed of neural signalling.

The study found that just before an epileptic seizure, nerve cells were abnormally active but only in a localized area of the brain. Instead, glial cells showed large burst of synchronous activity that are widely dispersed across the brain.

During the actual seizure, the neuronal activity increased abruptly. The functional connections between the nerve cells and glial cells became vigorous. When this happened, generalized seizure spread like a storm of electrical activity across the entire brain due to a strong increase in the level of glutamate, a chemical compound that transmits signals between neuronal cells. Glutamate was secreted by glial cells, which convert themselves from a friend to a foe.

The findings indicate that epilepsy may occur not only due to anomalies in neurons, but also in glial cells. "Our results provide a direct evidence that the interactions between glial cells and neurons change during the transition from a pre-seizure state to a generalized seizure. It will be interesting to see if this phenomenon is generalizable across different types of epilepsies," says Prof. Emre Yaksi.

Normally, the glial cells absorb the excess glutamate that is excreted during the increased activity of the nerve cells. This study assumes that the secretion process of the glial cells that we observed in combination with their hyperactivity just before a seizure is a defence mechanism of the brain.

“There are more glial cells than neurons in our brains. Yet, these cells were rather understudied. Our work uncovers an interesting function of the glia and will undoubtedly attract more interest into this cell type”, says CRTD research group leader Dr. Caghan Kizil who together with his colleague Mehmet Ilyas Cosacak is one of the co-authors of the study. Their group conducts its research at the CRTD of the TU Dresden as well as at the German Center for Neurodegenerative Diseases (DZNE).

In recent decades, a number of new epilepsy drugs have been developed, but a third of patients still do not have good control over their seizures. One reason may be that the current anti-epileptic drugs mostly target the neurons, while the glial cells, which constitute about 80% of the cells in the brain, have been overlooked. "Now we’re working further to investigate whether we can recognize any of the mechanisms that we identified in our current study, in our ongoing collaboration with clinicians" says Yaksi.

The Center for Regenerative Therapies Dresden (CRTD) of TU Dresden is academic home for scientists from more than 30 nations. Their mission is to discover the principles of cell and tissue regeneration and leveraging this for recognition, treatment and reversal of diseases. The CRTD links the bench to the clinic, scientists to clinicians to bring expertise in stem cells, gene-editing and regeneration towards innovative therapies for neurodegenerative diseases such as Alzheimer's and Parkinson's disease, haematological diseases such as leukaemia, metabolic diseases such as diabetes, retina and bone diseases. Since 2016, the CRTD is part of the central scientific unit “Center for Molecular and Cellular Bioengineering” (CMCB) of the TU Dresden and plays a central role within the research priority area Health Sciences, Biomedicine and Bioengineering of the TU Dresden.

www.tu-dresden.de/crtd

www.tu-dresden.de/cmcb

Wissenschaftliche Ansprechpartner:

Dr. Caghan Kizil
Tel.: +49 351 210 463-610
Email: caghan.kizil@tu-dresden.de

Originalpublikation:

Nature Communications: “Glia-neuron interactions underlie state transitions to generalized seizures” by Carmen Diaz Verdugo, Sverre Myren-Svelstad, Ecem Aydin, Evelien van Hoeymissen, Celine Deneubourg, Silke Vanderhaeghe, Julie Vancraeynest, Robbrecht Pilgrims, Mehmet Ilyas Cosacak, Akira Muto, Caghan Kizil, Koichi Kawakami, Nathalie Jurisch-Yaksi and Emre Yaksi.

Weitere Informationen:

http://www.crt-dresden.de/research/research-groups/core-groups/crtd-core-groups/...

Kim-Astrid Magister | Technische Universität Dresden

Further reports about: Bioengineering CRTD cell types epileptic epileptic seizures glial cells nerve cells neurons

More articles from Life Sciences:

nachricht Ceramic technologies for highly efficient power-to-X processes
10.10.2019 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Growing and moving
10.10.2019 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>