Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brandeis inventor patents anti-cholesterol formula

19.06.2013
Daniel Perlman '68 solves phytosterol dispersability problem

Senior Brandeis research scientist Daniel Perlman ’68 has discovered a way to make phytosterol molecules from plants dispersible in beverages and foods that are consumed by humans, potentially opening the way to dramatic reductions in human cholesterol levels.

A U.S. patent (number 8,460,738) on the new process and composition was issued on June 11.

Phytosterols in plants and cholesterol molecules in animals are highly similar and when both are dispersed together they are attracted to one another. When they mix in the gut of an animal, the cholesterol molecules are competitively inhibited from passing into the blood stream and instead are excreted.
The ability of phytosterols to reduce cholesterol levels in animals has been recognized since the 1950s, but practical application of this knowledge was difficult because phytosterols are not naturally water-soluble, and they are only poorly soluble in fatty substances.

Perlman and K.C. Hayes, professor emeritus of biology and former director of the Foster Biomedical Research Laboratories, invented and patented a way to increase the bioavailability of phytosterols in fats more than 10 years ago. Their separate discoveries relating to fat metabolism and oxidative stability led to development of the Smart Balance blend of oils and a number of other food products.

However, improving dispersal of phytosterols in water has remained problematic, and was an obstacle to their general use in foods and beverages. Phytosterols placed in water-based substances will not disperse, and this has thwarted their cholesterol-reducing potential.

Now, Perlman has found a way to change the behavior of phytosterols in liquids by forming a new complex in which glycerin molecules attach to phytosterol molecules. Phytosterols and glycerin are heated together to a temperature at which the water molecule that usually attaches to each phytosterol molecule boils off and is replaced by a glycerin molecule. Because glycerin molecules have multiple places at which water molecules can be attached and because glycerin also inhibits crystal growth that complicates dispersal, the phytosterol-glycerin complex together with an emulsifier becomes dispersible in water-based foods.

“I had been playing with ideas on how to enhance the dispersability of this molecule for a number of years,” said Perlman, who has more than 100 patents and pending patents on inventions he has made in his years at Brandeis. This was critically important, he explained, because “if you really want to have widespread public health benefits, you want to be able to put [phytosterols] in foods and beverages.”

Hayes said he has tested Perlman’s new compound in his laboratory for its effects on lipoprotein metabolism with excellent results in terms of its cholesterol-reducing action.

Physics Professor Seth Fraden, who is director of the Brandeis Materials Research Science and Engineering Center, said “the actual science of how it all works” when the attachment of glycerin changes phytosterol behavior “is not understood.”

Perlman, he said, “had a chemical intuition for doing this. He is a good chemist; he has a feeling for molecules and what they’ll do when you mix them. In addition to this intuition, he is very open-minded and will go in the lab and try things that other people don’t do because their professors have told them it won’t work.

“That’s why he’s a good inventor,” Fraden said.

Charles A. Radin | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>