Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain tumors fly under the body's radar like stealth jets, new U-M research suggests

07.08.2014

Extra protein on surface of early-stage glioma cells evades immune response

Brain tumors fly under the radar of the body's defense forces by coating their cells with extra amounts of a specific protein, new research shows.


In mice whose brain tumor cells (in green) couldn't make galectin-1, the body's immune system was able to recognize and attack the cells, causing them to die. In this microscope image, the orange areas show where tumor cells had died in just the first three days after the tumor was implanted in the brain. Six days later, the tumor had been eradicated.

Credit: University of Michigan Medical School

Like a stealth fighter jet, the coating means the cells evade detection by the early-warning immune system that should detect and kill them. The stealth approach lets the tumors hide until it's too late for the body to defeat them.

The findings, made in mice and rats, show the key role of a protein called galectin-1 in some of the most dangerous brain tumors, called high grade malignant gliomas. A research team from the University of Michigan Medical School made the discovery and has published it online in the journal Cancer Research.

In a stunning example of scientific serendipity, the team uncovered galectin-1's role by pursuing a chance finding. They had actually been trying to study how the extra production of galectin-1 by tumor cells affects cancer's ability to grow and spread in the brain.

... more about:
»Cancer »Health »ability »coating »dangerous »fly »glioma »immune »malignant »tumors

Instead, they found that when they blocked cancer cells from making galectin-1, the tumors were eradicated; they did not grow at all. That's because the "first responders" of the body's immune system – called natural killer or NK cells – spotted the tumor cells almost immediately and killed them.

But when the tumor cells made their usual amounts of galectin-1, the immune cells couldn't recognize the cancerous cells as dangerous. That meant that the immune system couldn't trigger the body's "second line of defense", called T cells – until the tumors had grown too large for the body to beat.

Team leader Pedro Lowenstein, M.D., Ph.D, of the U-M Department of Neurosurgery, says the findings open the door to research on the effect of blocking galectin-1 in patients with gliomas.

"This is an incredibly novel and exciting development, and shows that in science we must always be open-minded and go where the science takes us; no matter where we thought we wanted to go," says Lowenstein, whose graduate student Gregory J. Baker is the first author of the paper.

"In this case, we found that over-expression of galectin-1 inhibits the innate immune system, and this allows the tumor to grow enough to evade any possible effective T cell response," he explains. "By the time it's detected, the battle is already lost."

The NK-evading "stealth" function of the extra-thick coating of galectin-1 came as a surprise, because glioma researchers everywhere had assumed the extra protein had more to do with the insidious ability of gliomas to invade the brain, and to evade the attacks of T cells.

Gliomas, which make up about 80 percent of all malignant brain tumors, include anaplastic oligodendrogliomas, anaplastic astrocytomas, and glioblastoma multiforme. More than 24,000 people in the U.S. are diagnosed with a primary malignant brain tumor each year.

The tiny tendrils of tumor that extend into brain tissue from a glioma are what make them so dangerous. Even when a neurosurgeon removes the bulk of the tumor, small invasive areas escape detection and keep growing, unchecked by the body.

Helping the innate immune system to recognize early stages of cancer growth, and sound the alarm for the body's defense system to act while the remaining cancer is still small enough for them to kill, could potentially help patients.

While the new discovery opens the door to that kind of approach, much work needs to be done before the mouse-based research could help human patients, says Lowenstein, who is the Richard Schneider Collegiate Professor in Neurosurgery and also holds an appointment in the U-M Department of Cell and Developmental Biology. Galectin-1 may help other types of tumor evade the innate NK cells, too

The new research suggests that in the brain's unique environment, galectin-1 creates an immunosuppressive effect immediately around tumor cells. The brain cancer cells seem to have evolved the ability to express their galectin-1 genes far more than normal, to allow the tumor to keep growing.

Lowenstein and co-team leader Maria Castro, Ph.D., have long studied the immune system's interactions with brain cancer, using funding from the National Institutes of Health, and are co-leading a new clinical trial for malignant glioma (NCT01811992), that aims to translate prior research achievements into new trials for patients with brain tumors.

Most brain tumor immune research has focused on triggering the action of the adaptive immune system – whose cells control the process that allows the body to kill invaders from outside or within.

But that system take days or even weeks to reach full force – enough time for incipient tumors to grow too large for immune cells to eliminate solid tumor growth. The new research suggests the importance of enhancing the ability of the innate immune system's "early warning" sentinels to spot glioma cells as early as possible.

###

Lowenstein, Castro, and Baker worked with U-M Cell & Developmental Biology and Biomedical Engineering researcher Sivaraj Sivaramakrishnan, Ph.D., on the new research. Co-authors are Peter Chockley, Viveka Nand Yadav, Ph.D., Robert Doherty and Michael Ritt.

The research was supported by the National Institute of Neurological Disorders & Stroke (NS054193, NS061107, NS082311, NS052465, NS057711, NS074387).

Reference:

Cancer Research, OnlineFirst, doi:10.1158/0008-5472.CAN-14-1203, http://cancerres.aacrjournals.org/content/early/2014/07/18/0008-5472.CAN-14-1203.abstract

For patients:

The U-M Neurooncology Program, part of the U-M Comprehensive Cancer Center, treats patients with all forms of brain cancer. For information on U-M clinical care and clinical trials for brain tumors, visit http://umhealth.me/btprogram or call 1-800-865-1125.

Kara Gavin | Eurek Alert!
Further information:
http://www.umich.edu

Further reports about: Cancer Health ability coating dangerous fly glioma immune malignant tumors

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>