Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Brain Protein

23.07.2012
Surprising Discovery: Brain Variants of Protein Associated with Huntington's and Other Neurodegenerative Diseases Identified

A protein essential for metabolism and recently associated with neurodegenerative diseases also occurs in several brain-specific forms. This discovery emerged in the course of a research project funded by the Austrian Science Fund FWF, the findings of which have now been published in the journal Human Molecular Genetics. The scientists working on the project discovered a large new region in the genetic code of the protein PGC-1alpha.

Previously unknown variations of the protein, which can be found specifically in the brain, are produced from this region. This discovery may provide tissue-specific starting points for the development of new treatments for neurodegenerative diseases like Huntington´s, Parkinson´s and Alzheimer´s.

PGC-1alpha is a real jack-of-all-trades. As a central regulator of metabolic genes that coordinate energy metabolism, the protein, which functions as a "transcriptional coactivator", influences major body functions. The extent to which the protein also influences medical conditions like obesity, diabetes and metabolic syndrome is unclear, and was under further investigation as part of a research project funded by the Austrian Science Fund FWF. In the course of their research, however, the scientists stumbled on unexpected findings with a particular relevance for neurodegenerative diseases.

MAJOR DIFFERENCE

A research team headed by Prof. Wolfgang Patsch from the Departments of Pharmacology and Toxicology, and Laboratory Medicine at the Paracelsus Medical University established that the gene which codes for PGC-1alpha (PPARGC1A) is six times larger than hitherto assumed. A new promoter was actually found at some distance (ca. 580 kb) from the previously known gene. A promoter is a DNA segment usually occurring upstream from a gene that can ultimately control how that gene is expressed as a protein. The transmission of genetic information from DNA to RNA molecules, i.e. transcription, is an important intermediate step in this process.

Transcripts, which are produced from the newly discovered promoter, were now examined in detail as part of the research project. "These transcripts differ in important regions from those encoded by the previously characterised - reference - PPARGC1A locus. Based on these differences, we were able to show that these previously unknown transcripts are produced specifically in human brain cells and are at least as common there as the reference transcripts," explains Dr. Selma M. Soyal, first author of the article currently published in Human Molecular Genetics. Further analyses showed that the differences in the transcripts lead to the formation of proteins which differ from the protein that acts as a reference, in particular at the N-terminus. Other differences were found within the PGC-1alpha amino acid chain.

When the different PGC-1alpha proteins were localised in human cells (SH-SY5Y), another surprise awaited the scientists: whereas the reference protein was located mainly in the cell nucleus, one of the newly discovered variants was mainly found in the surrounding cytoplasm; another was found both in the nucleus and in the cytoplasm. According to Prof. Patsch: "It is likely that the differences we found in the transcripts influence mechanisms in the finished proteins which control their localisation in the cell."

A PROTEIN WITH IMPACT

The detailed functional characterisation of the brain-specific proteins could prove significant, as PGC-1alpha is associated with various neurodegenerative diseases such as Huntington´s disease, Parkinson´s and Alzheimer´s - a link that was also confirmed by the project. Using complex statistical analyses, sequence differences in the new promoter were examined in 1.706 Huntington patients as part of a collaboration with the European Huntington´s Disease Network. A clear correlation emerged here between different sequence patterns and the age of onset of the disease in the patients. In addition, the scientists were also able to show that the newly discovered promoter is active in nerve tissue. This indicates that it may actually play an important role in the only partly known links between PGC-1alpha and the neurodegenerative diseases in question.

Overall, the findings of this project, which is funded by the Austrian Science Fund FWF, indicate complex functions of PGC-1alpha in humans. If the scientists succeed in reaching a better understanding of this complexity, PGC-1alpha could provide new possibilities for future therapeutic intervention in key neurodegenerative diseases.

Image and text available from Monday, 23 July 2012, at 09.00 CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201207-en.html
Original publication: A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset. S. M. Soyal, T. K. Felder, S. Auer, P. Hahne, H. Oberkofler, A. Witting, M. Paulmichl, G. B. Landwehrmeyer, P. Weydt, W. Patsch and For the European Huntington Disease Network. Human Molecular Genetics, 2012, doi: 10.1093/hmg/dds177
Scientific Contact:
Prof. Wolfgang Patsch
Paracelsus Medical University
Department of Pharmacology and Toxicology Strubergasse 21
5020 Salzburg, Austria
T +43 / (0)662 / 442002 - 1231 and 1236
E wolfgang.patsch@pmu.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Development Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv201207-en.html

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>