Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain lights up

27.09.2010
The dynamic activity of electrical signals in neuronal populations can now be visualized with a powerful tool

Information processing in the brain relies on the coordinated activity between populations of different types of neurons, each with distinct electrical properties and connections. Understanding how complex neuronal circuitry processes information is challenging, as it requires measuring the activity of groups of specified cells.

Thomas Knöpfel of the RIKEN Brain Science Institute, Wako, and his colleagues have developed a genetically encoded voltage sensor that can be used to probe the electrical of activity from selected populations of defined neurons within the brains of living animals1. The sensor is based on voltage-sensitive proteins that insert themselves into the membrane of genetically targeted nerve cells and emit a fluorescent signal in response to the changes in membrane voltage that occur during neuronal activity.

Knöpfel’s group validated the sensor by introducing it into cultured mouse hippocampal neurons. By inserting electrodes into the cells and observing them under the microscope, they found that single spontaneous nervous impulses were accompanied by an increase in yellow fluorescence.

The same results were obtained in brain slices prepared from mice transfected with DNA encoding the sensor while still in the womb. These experiments also showed that the sensor is capable of detecting circuit activity in the slices. When nervous impulses were induced in specified cells using electrodes, fluorescent signals were observed in the cells connected to them.

Finally, the researchers demonstrated that the sensor can detect the activity of specific groups of cells in the brains of live mice in response to natural sensory stimuli. Again, they transfected embryonic mice with the sensor, targeting a brain region called the barrel cortex, which receives information from the whiskers.

When the mice became adults, the researchers stimulated their whiskers and monitored activity in the barrel cortex through thinned regions of the animals’ skulls. Deflection of individual whiskers was found to produce fluorescent signals in the corresponding area of the cortex.

Other optical methods available for monitoring neuronal activity have disadvantages. Voltage-sensitive dyes can be toxic to cells, while genetically encoded calcium indicators, which fluoresce in response to the localized calcium signals characteristic of neuronal activity, can interfere with signaling pathways by buffering calcium and provide information only on a slower time scale. The voltage sensor developed by Knöpfel and his colleagues therefore improves on them.

“This will facilitate the investigation of fundamental questions of information processing in the brain,” says Knöpfel, “and will also be applicable to directly visualize cognitive function.”

The corresponding author for this highlight is based at the Laboratory for Neuronal Circuit Dynamics, RIKEN Brain Science Institute

Journal information
1. Akemann, W., Mutoh, H., Perron, A., Rossier, J. & Knöpfel, T. Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nature Methods 7, 643–649 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6402
http://www.researchsea.com

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>