Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the Brain of a Locust ...

30.11.2010
TAU researcher takes an unorthodox route to understanding the human neurosystem

In the human brain, mechanical stress — the amount of pressure applied to a particular area — requires a delicate balance. Just the right force keeps neurons together and functioning as a system within the body, and proper nerve function is dependent on this tension.

Now researchers at Tel Aviv University say that mechanical stress plays an even more important role than medical science previously believed. Their research has the potential to tell us more than ever before about the form and function of neuronal systems, including the human brain. And they've used the common locust to prove it.

Prof. Amir Ayali of Tel Aviv University's Department of Zoology, with Prof. Yael Hanein of the School of Electrical Engineering and Prof. Eshel Ben-Jacob of the Department of Physics, has successfully cultured cells taken from the desert locust to delve deeper into the workings of the mammalian neurosystem. Their most recent discovery, he says, is that mechanical stress plays a pivotal role not only in the development of the brain, but also its function.

Recently published in several journals including Biophysical Journal and Nanotechnology, this research demonstrates that mechanical stress is instrumental in several key phenomena in neuronal development. Once a neuron has developed, explains Prof. Ayali, it is attracted to and then attaches to another neuron, which pulls it to the appropriate place within the neurosystem. "This tension is crucial for making the right connections," he says.

A neuron system in a dish

According to Prof. Ayali, insect cells provide a unique window into the world of neurons because they're easier to work with than human cells. Large enough to culture, Prof. Ayali and his fellow researchers harvested insect neurons and allowed them to regenerate, then built an in vitro nervous system in a dish. The team was then able to follow each single cell optically, watching how they regenerated and recording their electrical activity.

Most importantly, the team was able to observe the neurons form a network. A key feature, Prof. Ayali says, is mechanical tension. As the neurosystem develops, some cells are eliminated, while others are stabilized and preserved. Cells that successfully connect with one another maintain this connection through mechanical stress. This tension draws cells to their destined locations throughout the neurosystem. As neurons develop, they migrate to the appropriate location in the body, and it's mechanical stress that draws them there.

A meeting of the minds

Although the researchers' choice of insect cells for their investigation is unorthodox, Prof. Ayali says that the benefits are tremendous. The cells are basic enough to be applicable to any system, including the human neurosystem, he notes. If it were not for the large size and low density that insect cells provide, the team would not be able to follow individual cells and track the connections they make. "We're looking at simple phenomena that apply generally," he says. "The development from single cells to groups of clusters is common to every kind of neuron."

The research is unique in more ways than one. Prof. Ayali emphasizes that this project exhibits a truly interdisciplinary approach to neuroscience. The project includes researchers from numerous scientific fields, including zoology, electrical engineering and physics.

Keep up with the latest AFTAU news on Twitter: http://www.twitter.com/AFTAUnews

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Brain Locust human brain human cell mechanical stress single cell

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>