Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Bouncer”, the gate-keeper of the egg, controls sperm entry

07.09.2018

A newly found protein restricts fertilisation between species

Fertilisation is a pivotal process underlying all sexual reproduction, yet its molecular mechanisms are poorly understood. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna have now identified a protein they called “Bouncer” as a crucial factor for sperm entry into the egg. Remarkably, this protein is sufficient to allow fertilisation between different species. The study is published in the current issue of the journal Science.


“Adult medaka (Oryzias latipes, top) and zebrafish (Danio rerio, bottom)”.

IMP


Zebrafish (Danio rerio) and medaka (Oryzias latipes) embryos shortly after fertilization.

IMP

Fertilisation, the fusion of egg and sperm to form the single-cell zygote, is highly efficient yet species-restricted. This strategy ensures reproductive success and the survival of distinct species. However, it is far from understood how these seemingly contradictory requirements are met at the molecular level. Over the years, researchers have identified numerous proteins in vertebrates that seemed to play an essential role in fertilisation. However, the majority of them turned out to be dispensable.

IMP Group Leader Andrea Pauli and her team have turned to zebrafish to identify factors required for fertilisation. Of all the short, uncharacterised genes the group identified (Pauli et al., 2014), one clearly stood out: it was highly expressed in the fish egg, and similar genes were present in other vertebrates. Given its crucial function in ensuring that only the correct sperm can enter the egg, the authors named the gene ‘bouncer’ in analogy to the security guard at a bar.

Experiments with zebrafish revealed that Bouncer enables sperm to enter the egg by promoting stable egg-sperm binding. Thus, its function is essential for successful reproduction in zebrafish. Because the Bouncer homologs differ substantially among fish species, the researchers speculated that the protein might play a role in ensuring that only sperm of the correct species can enter the egg, thus preventing crossbreeding. To test this hypothesis, they constructed transgenic zebrafish that expressed the Bouncer homolog from the Japanese rice fish medaka.

Under natural conditions, the medaka cannot cross-hybridise with zebrafish. After all, the evolutionary paths of the two species diverged over 200 million years ago, long before the ancestral lines of humans and whales split up. Remarkably, when female zebrafish expressed the medaka Bouncer protein, their eggs could be fertilised by medaka sperm. The resulting embryos were medaka-zebrafish hybrids, meaning they contained DNA from both species. These hybrid embryos started to develop and underwent several rounds of cell division and gastrulation movements before dying, usually within two days.

These results demonstrate that Bouncer is necessary and sufficient for mediating species-specific fertilisation in fish. Like a security guard, the protein is decisive for allowing sperm of the same species to enter the egg, while keeping foreign sperm out – hence the chosen name. “Our study is the first report of a protein in any organism allowing entry of another species’ sperm”, says Sarah Herberg, a VBC PhD Student at the IMP and first author of the publication. She also points out that the results suggest the existence of a direct species-specific interaction partner of Bouncer on sperm. The identification of this interaction partner will be the next step towards understanding the mechanism behind Bouncer’s function.

Intriguingly, Bouncer also has a close homolog in humans, a gene called SPACA4. However, unlike in fish and other externally fertilising species such as amphibians, where Bouncer is expressed exclusively in the egg, humans and other internally fertilising species express SPACA4 in the male reproductive system. Whether the mammalian version of Bouncer has a similarly important role in fertilisation will be an exciting line of future investigation to uncover the molecular machinery that mediates this fundamental yet so poorly understood process.

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna pursues world-class research in basic molecular biology. It is located at the Vienna BioCenter and largely sponsored by Boehringer Ingelheim. With over 200 scientists from 40 countries, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. www.imp.ac.at

About Vienna BioCenter
Vienna BioCenter is a leading life sciences hub in Europe, offering an extraordinary combination of research, business and education in a single location. About 1,700 employees, 86 research groups, 20 biotech companies, 1,300 students and scientists from 70 countries create a highly dynamic and stimulating environment. www.viennabiocenter.org

Wissenschaftliche Ansprechpartner:

Dr. Andrea Pauli, IMP Group Leader
andrea.pauli@imp.ac.at

Originalpublikation:

Sarah Herberg, Krista R. Gert, Alexander Schleiffer, and Andrea Pauli: The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization. Science, 7 Sep 2018.

Weitere Informationen:

http://www.imp.ac.at/supplements

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Further reports about: Molekulare Pathologie Pathology Zebrafish fertilisation security guard sperm

More articles from Life Sciences:

nachricht Stray proteins cause genetic disorders
07.09.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Brown fat cells to lose weight
06.09.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel 3D printed polymer lenses for X-ray microscopes: highly efficient and low cost

Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart invented a new and cost-effective method for making X-ray lenses with nanometer-sized features and excellent focusing capabilities. By using an advanced 3D printing technique, a single lens can be manufactured under a minute from polymeric materials with extremely favorable X-ray optical properties, hence the costs of prototyping and manufacturing are strongly reduced. High-throughput and high-yield manufacturing processes of such lenses are sought after world-wide, which is why the scientists have filed a patent for their invention.

X-ray microscopes are fascinating imaging tools. They uniquely combine nanometer-size resolution with a large penetration depth: X-ray microscopy or XRM is the...

Im Focus: Tilted pulses

Physicists from Konstanz produced extremely short and specifically-shaped electron pulses for materials studies in the femtosecond and attosecond range in collaboration with Munich-based institutes

Our world is basically made up of atoms and electrons. They are very small and move around very rapidly in case of processes or reactions. Although seeing...

Im Focus: Digital Twin meets Plug & Produce – Fraunhofer IPK at the IMTS in Chicago

Hannover Messe is expanding to the USA – and Fraunhofer IPK is joining in with a trendsetting exhibit. It combines fast and flexible design and application of the shopfloor IT with a digital twin, which ensures transparency even in complex production systems.

For the first time ever, Deutsche Messe organizes a Hannover Messe brand event outside of Germany – and Fraunhofer IPK is taking part.

Im Focus: Watching atoms and electrons at work

Kiel layered crystals are used worldwide as a basis for exploring the nano-cosmos

The properties of materials are determined by their atomic structure. If atoms and electrons change their positions, then the characteristics of a material...

Im Focus: How a NASA scientist looks in the depths of the Great Red Spot to find water on Jupiter

For centuries, scientists have worked to understand the makeup of Jupiter. It's no wonder: this mysterious planet is the biggest one in our solar system by far, and chemically, the closest relative to the Sun. Understanding Jupiter is a key to learning more about how our solar system formed, and even about how other solar systems develop.

But one critical question has bedeviled astronomers for generations: Is there water deep in Jupiter's atmosphere, and if so, how much?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

“Bouncer”, the gate-keeper of the egg, controls sperm entry

07.09.2018 | Life Sciences

Experiment obtains entanglement of six light waves with a single laser

07.09.2018 | Physics and Astronomy

Stray proteins cause genetic disorders

07.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>