Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Botanists in the rainforest

10.04.2013
Chimpanzees use botanical skills to discover fruit

Fruit-eating animals are known to use their spatial memory to relocate fruit, yet, it is unclear how they manage to find fruit in the first place.


Chimpanzees gazing up tree crowns in their search for fruit. © Ammie Kalan

Researchers of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have now investigated which strategies chimpanzees in the Taï National Park in Côte d’Ivoire, West Africa, use in order to find fruit in the rain forest. The result: Chimpanzees know that trees of certain species produce fruit simultaneously and use this botanical knowledge during their daily search for fruit.

To investigate if chimpanzees know that if a tree is carrying fruit, then other trees of the same species are likely to carry fruit as well, the researchers conducted observations of their inspections, i.e. the visual checking of fruit availability in tree crowns. They focused their analyses on recordings in which they saw chimpanzees inspect empty trees, when they made “mistakes”.

By analysing these “mistakes”, the researchers were able to exclude that sensory cues of fruit had triggered the inspection and were the first to learn that chimpanzees had expectations of finding fruit days before feeding on it. They, in addition, significantly increased their expectations of finding fruit after tasting the first fruit in season. “They did not simply develop a ‘taste’ for specific fruit on which they had fed frequently”, says Karline Janmaat. “Instead, inspection probability was predicted by a particular botanical feature - the level of synchrony in fruit production of the species of encountered trees.”

The researchers conclude that chimpanzees know that trees of certain species produce fruit simultaneously and use this information during their daily search for fruit. They base their expectations of finding fruit on a combination of botanical knowledge founded on the success rates of fruit discovery and an ability to categorize fruits into distinct species. “Our results provide new insights into the variety of food-finding strategies employed by our close relatives, the chimpanzees, and may well elucidate the evolutionary origins of categorization abilities and abstract thinking in humans”, says Christophe Boesch, director of the Max Planck Institute for Evolutionary Anthropology’s Department of Primatology.

Contact

Karline R. L. Janmaat,
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-227
Email: karline_janmaat@­eva.mpg.de
Sandra Jacob,
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: jacob@­eva.mpg.de
Original publication
Karline R. L. Janmaat, Simone D. Ban & Christophe Boesch
Taï Chimpanzees use Botanical Skills to Discover Fruit: What we can Learn from their Mistakes

Animal Cognition, 10 April 2013

Karline R. L. Janmaat | Max-Planck-Institute
Further information:
http://www.mpg.de/7089161/chimpanzees-botanical-skills

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>