Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boosting longevity with good bacteria

09.01.2012
A diet supplemented with a specific probiotic bacterial strain increases the lifespan of mice

The mammalian gut is home to hundreds of bacterial species that contribute to food digestion and, in some cases, inflammatory gut diseases. Probiotics, beneficial bacterial species, can enhance gut health by keeping the resident bacteria in check. Now, a team of researchers at the RIKEN Innovation Center in Wako, including Mitsuharu Matsumoto, report that administration of the probiotic bacterial strain Bifidobacterium animalis subspecies lactis LKM512 to mice can lengthen their lifespan1.


Figure 1: Compared with untreated aging mice (left), LKM512 maintains a healthy gut lining in treated aging mice (right) (scale bar, 500 ìm).
Copyright : 2011 Mitsuharu Matsumoto et al.

Matsumoto and colleagues previously showed that LKM512 could reduce inflammatory markers in elderly humans and modify the makeup of intestinal bacteria2, but the effects of it on lifespan still required investigation. After starting 10-month-old mice on a diet including LKM512 for 11 months, the researchers found that LKM512-treated mice lived longer, had fewer skin lesions, and had better hair quality than untreated mice.

Analyses of the gut of these mice revealed elevated gene expression in some bacterial species compared with control mice, indicating that LKM512 may improve gut health indirectly by regulating the levels of other bacterial species. The LKM512 treatment also prevented some age-related changes in bacterial composition of the gut, suggesting that the probiotic treatment protects the gut from developing characteristics associated with aging.

Acting as a barrier between the bacteria and food within the gut and the rest of the human body is an important role of the gut lining. Breakdown of this lining can cause infectious or inflammatory diseases. The researchers found that the gut of LKM512-treated mice served as a stronger barrier than the gut of control mice. LKM512 seemed to perform this function by increasing the expression of various proteins that maintain the tight connection between gut epithelial cells.

Polyamines are chemicals that reduce inflammation, and their levels decrease as an individual ages. Matsumoto and colleagues observed increases in intestinal polyamine levels in LKM512-treated mice, which may be caused by the greater numbers of bacteria promoted by LKM512. The increase in polyamines caused by LKM512 appeared to reduce inflammation in the body of the mice, as inflammatory markers in the blood and urine were lower in LKM512-treated mice compared with controls. In aged mice treated with LKM512, inflammatory marker levels were similar to those observed in younger mice, indicating that adults can benefit from probiotics.

“In future work, we hope to clarify the effectiveness of LKM512 in humans,” explains Matsumoto. If the findings extend to humans, inclusion of LKM512 into the human diet could enhance overall health and increase the human lifespan.

The corresponding author for this highlight is based at the Benno Laboratory, RIKEN Research Cluster for Innovation

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>