Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow-derived cells differentiate in the brain through mechanisms of plasticity

20.12.2011
Bone marrow-derived stem cells (BMDCs) have been recognized as a source for transplantation because they can contribute to different cell populations in a variety of organs under both normal and pathological conditions.

Many BMDC studies have been aimed at repairing damaged brain tissue or helping to restore lost neural function, with much research focused on BMDC transplants to the cerebellum at the back of the brain. In a recent study, a research team from Spain has found that BMDCs, can contribute to a variety of neural cell types in other areas of the brain as well, including the olfactory bulb, because of a mechanism of "plasticity".

Their results are published in the current issue of Cell Transplantation (20:8) now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"To our knowledge, ours is the first work reporting the BMDC's contribution to the olfactory neurons," said study corresponding author Dr. Eduardo Weruaga of the University of Salamanca, Spain. "We have shown for the first time how BMDCs contribute to the central nervous system in different ways in the same animal depending on the region and cell-specific factors."

In this study, researchers grafted bone marrow cells into mutant mice suffering from the degeneration of specific neuronal populations at different ages, then compared them to similarly transplanted healthy controls. An increase in the number of BMDCs was found along the lifespan in both experimental groups. Six weeks after transplantation, however, more bone marrow-derived microglial cells were observed in the olfactory bulbs of the test animals where the degeneration of mitral cells was still in progress. The difference was not observed in the cerebellum where cell degeneration had been completed.

"Our findings demonstrate that the degree of neurodegenerative environment can foster the recruitment of neural elements derived from bone marrow," explained Dr. Weruaga. "But we also have provided the first evidence that BMDCs can contribute simultaneously to different encephalic areas through different mechanisms of plasticity – cell fusion for Purkinje cells - among the largest and most elaborately dendritic neurons in the human brain - and differentiation for olfactory bulb interneurons."

Dr. Weruaga noted that they confirmed that BMDCs fuse with Purkinje cells but, unexpectedly, they found that the neurodegenerative environment had no effect on the behavior of the BMDCs.

"Interestingly, the contribution of BMDCs occurred through these two different plasticity mechanisms, which strongly suggests that plasticity mechanisms may be modulated by region and cell type-specific factors," he said.

Contact: Dr. Eduardo Werunga, Labratorio de Plasticidad Neuronal y Neurorreparacion. Instituto de Neurosciencias de Castilla y Leon. Universidad de Salamanca. C/ Pinto Fernando Gallego, N 1. E-37007 Salamanca, Spain.
Tel. +34-923-294500, ext 5324
Fax. +34-923-294549
Email ewp@usal.es
Citation: Recio, J. S.; Álvarez-Dolado, M.; Díaz, D.; Baltanás, F. C.; Piquer-Gil, M.; Alonso, J. R.; Werunga, E. Bone Marrow Contributes Simultaneously to Different Neural Types in the Central Nervous System Through Different Mechanisms of Plasticity. Cell Transplant. 20(8):1179-1192; 2011.

"This study shows a potential new contribution of bone marrow derived cells following transplantation into the brain, making these cells highly versatile, in their ability to both differentiate into and fuse with endogenous neurons" said Dr. Paul R. Sanberg , coeditor-in-chief of CELL TRANSPLANTATION and distinguished professor of Neuroscience at the Center of Excellence for Aging and Brain Repair, University of South Florida.

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

David Eve | EurekAlert!
Further information:
http://www.miami.edu

Further reports about: Brain Brain Repair Purkinje cells bone marrow brain aging cell death cell type

More articles from Life Sciences:

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New candidate for raw material synthesis through gene transfer
03.07.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Moss protein corrects genetic defects of other plants

03.07.2020 | Life Sciences

Typhoon changed earthquake patterns

03.07.2020 | Earth Sciences

New candidate for raw material synthesis through gene transfer

03.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>