Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bolstering fat cells offers potential new leukemia treatment

17.10.2017

Killing cancer cells indirectly by powering up fat cells in the bone marrow could help acute myeloid leukemia patients, according to a new study from McMaster University.

Researchers with the McMaster Stem Cell and Cancer Research Institute found that boosting adipocytes, or fat cells, located in the bone morrow suppressed cancerous leukemia cells but - in a surprise to the research team -- induced the regeneration of healthy blood cells at the same time.


These are fat cells (white circles) in healthy human bone marrow, left, compared to bone marrow in a patient with leukemia, right.

Image courtesy McMaster University

The production of healthy red blood cells is critical for those with acute myeloid leukemia but is sometimes overlooked as conventional treatments focus on killing the leukemia cells alone. Patients with this disease suffer from anemia and infection due to the failure of healthy blood production, all of which are leading causes of hospitalization and death from the disease.

The study was published today in the journal Nature Cell Biology.

"Our approach represents a different way of looking at leukemia and considers the entire bone marrow as an ecosystem, rather than the traditional approach of studying and trying to directly kill the diseased cells themselves," said Allison Boyd, postdoctoral fellow with the research institute and first author of the study.

"These traditional approaches have not delivered enough new therapeutic options for patients. The standard-of-care for this disease hasn't changed in several decades."

The McMaster-led study was conducted over the past three and half years and started from observations of leukemia patients. This led to the collection of bone marrow samples from larger cohorts of patients with the Ottawa Hospital Research Institute, as well as those from Western University and Hamilton Health Sciences, for the next steps of investigation. This included detailed study and imaging of individual leukemia cells compared to healthy cells residing in the bone marrow, which revealed the effects of targeting fat cells.

A drug commonly used to moderate diabetes that induces fat cell production in the bone marrow was used and was found to help foster red blood cell production as well as suppress leukemic disease.

"The focus of chemotherapy and existing standard-of-care is on killing cancer cells but instead we took a completely different approach which changes the environment the cancer cells live in," said Mick Bhatia, director and senior scientist with the McMaster Stem Cell and Cancer Research Institute, who led the group that performed the study.

"This not only suppressed the "bad" cancer cells, but also bolstered the "good" healthy cells allowing them to regenerate in the new drug-induced environment."

"The fact that we can target one cell type in one tissue using an existing drug makes us excited about the possibilities of testing this in patients."

"We can envision this becoming a potential new therapeutic approach that can either be added to existing treatments or even replace others in the near future. The fact that this drug activates blood regeneration may provide benefits for those waiting for bone marrow transplants by activating their own healthy cells."

###

Funding for the study came from the Canadian Cancer Society Research Institute and the Marta and Owen Boris Foundation.

Editors: Pictures of researchers of the McMaster Stem Cell and Cancer Research Institute and illustrations related to this study are available upon request.

For more information, please contact:

Tina Depko
Communications Coordinator
Faculty of Health Sciences
McMaster University
depkot@mcmaster.ca
905-525-9140, ext. 22196

http://www.mcmaster.ca 

Tina Depko | EurekAlert!

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>