Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The body’s power stations can affect ageing

10.05.2011
Mitochondria are the body’s energy producers, the power stations inside our cells. Researchers at the University of Gothenburg, Sweden, have now identified a group of mitochondrial proteins, the absence of which allows other protein groups to stabilise the genome. This could delay the onset of age-related diseases and increase lifespan.

Some theories of human ageing suggest that the power generators of the cell, the mitochondria, play a part in the process. In addition to supplying us with energy in a usable form, mitochondria also produce harmful by-products – reactive oxyradicals that attack and damage various cell components.

Eventually these injuries become too much for the cell to cope with, and it loses its capacity to maintain important functions, so the organism starts to age. That’s the theory anyway. Oddly enough, several studies have shown that certain mitochondrial dysfunctions can actually delay ageing, at least in fungi, worms and flies. The underlying mechanisms have yet to be determined.

In a study from the Department of Cell and Molecular Biology at the University of Gothenburg, published in the journal Molecular Cell, a research team has now identified a group of mitochondrial proteins that are involved in this type of ageing regulation. The researchers found that a group of proteins called MTC proteins, which are normally needed for mitochondrial protein synthesis, also have other functions that influence genome stability and the cell’s capacity to remove damaged and harmful proteins.

“When a certain MTC protein is lacking in the cell, e.g. because of a mutation in the corresponding gene, the other MTC proteins appear to adopt a new function. They then gain increased significance for the stabilisation of the genome and for combating protein damage, which leads to increased lifespan,” says Thomas Nyström of the Department of Cell and Molecular Biology.

He adds, “These studies also show that this MTC-dependent regulation of the rate of ageing uses the same signalling pathways that are activated in calorie restriction – something that extends the lifespan of many different organisms, including yeasts, mice and primates. Some of the MTC proteins identified in this study can also be found in the human cell, raising the obvious question of whether they play a similar role in the regulation of our own ageing processes. It is possible that modulating the activity of the MTC proteins could enable us to improve the capacity of the cell to delay the onset of age-related diseases. These include diseases related to instability of the genome, such as cancer, as well as those related to harmful proteins, such as Alzheimer’s disease and Parkinson’s disease. At the moment this is only speculation, and the precise mechanism underlying the role of the MTC proteins in the ageing process is a fascinating question that remains to be answered.”

The article, Absence of Mitochondrial Translation Control Proteins Extends Life Span by Activating Sirtuin-Dependent Silencing, has been published in the scholarly journal Molecular Cell.

Bibliographic data
Journal: Molecular Cell, Volume 42, Issue 3, 390-400, 6 May 2011
Title: Absence of Mitochondrial Translation Control Proteins Extends Life Span by Activating Sirtuin-Dependent Silencing

Authors: Antonio Caballero, Ana Ugidos, Beidong Liu, David Öling, Kristian Kvint, Xinxin Hao, Cora Mignat, Laurence Nachin, Mikael Molin, Thomas Nyström

Contact:
Thomas Nyström
+46-31- 786 2582 +46-31- 786 2582
thomas.nystrom@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.cell.com/molecular-cell/fulltext/S1097-2765%2811%2900253-X

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>