The body´s bacteria affect intestinal blood vessel formation

The results, which are presented in Nature, may provide future treatments of intestinal diseases and obesity.

There are ten times more bacteria in our intestines than cells in the human body. However, we know relatively little about how the normal gut microbiota functions and the resulting effects on our physiology.

Previously unknown mechanism
In a study of mice, researchers at the University of Gothenburg’s Sahlgrenska Academy have discovered a previously unknown mechanism by which gut microbiota influences intestinal physiology and blood vasculature remodelling. The results, which are published in the online version of the highly respected scientific journal Nature on 11 March, open up future opportunities to control the intestine’s absorption of nutrients, which in turn may be used to treat conditions such as intestinal diseases and obesity.
New blood vessels
The study focuses on villi, finger-like projections which are about one millimetre long, and which increase the surface area of the intestine and maximise its ability to absorb nutrients. In the presence of bacteria, these villi become shorter and wider, which means that new blood vessels must be formed. However, the process involved has previously been unclear.
“Zip code” for protein signals
“Our study shows that signals from the normal gut microbiota that induces blood vessel formation in the small intestine” says researcher Fredrik Bäckhed, who led the study at the Sahlgrenska Academy. “In simplified terms, the intestinal bacteria promote the mucosal cells in the intestine to attach a sugar molecule to a specific protein. The sugar molecule acts like a zip code moving it to the cell surface where it induces signaling.
“It will take time before the results can be applied in a clinical context and converted into new therapies. But our discovery is exciting, and is a result of fundamental basic research which teaches us a great deal about how we live in cooperation with the normal gut microobiota.”

Article Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodeling, published in Nature on 11 March.

FACTS ABOUT NORMAL INTESTINAL FLORA
Our intestines are colonised with ten times more bacteria than there are cells in the body, and these have a significant impact on our physiology, affecting the development of the immune system, vitamin production and intestinal absorption of nutrients, for example. An altered gut microbiotais associated with various diseases, such as inflammatory intestinal disease, obesity and allergies.
For more information, please contact: Fredrik Bäckhed, docent at the Sahlgrenska Academy
Telephone: +46 (0)31 342 7833
E-mail: fredrik.backhed@wlab.gu.se

Media Contact

Helena Aaberg idw

More Information:

http://www.gu.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors