Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body clock receptor linked to diabetes in new genetic study

30.01.2012
A study published in Nature Genetics today has found new evidence for a link between the body clock hormone melatonin and type 2 diabetes. The study found that people who carry rare genetic mutations in the receptor for melatonin have a much higher risk of type 2 diabetes.

The findings should help scientists to more accurately assess personal diabetes risk and could lead to the development of personalised treatments.

Previous research has found that people who work night shifts have a higher risk of type 2 diabetes and heart disease. Studies have also found that if volunteers have their sleep disrupted repeatedly for three days, they temporarily develop symptoms of diabetes.

The body's sleep-wake cycle is controlled by the hormone melatonin, which has effects including drowsiness and lowering body temperature. In 2008, a genetic study led by Imperial College London discovered that people with common variations in the gene for MT2, a receptor for melatonin, have a slightly higher risk of type 2 diabetes.

The new study reveals that carrying any of four rare mutations in the MT2 gene increases a person's risk of developing type 2 diabetes six times. The release of insulin, which regulates blood sugar levels, is known to be regulated by melatonin. The researchers suggest that mutations in the MT2 gene may disrupt the link between the body clock and insulin release, leading to abnormal control of blood sugar.

Professor Philippe Froguel, from the School of Public Health at Imperial College London, who led the study, said: "Blood sugar control is one of the many processes regulated by the body's biological clock. This study adds to our understanding of how the gene that carries the blueprint for a key component in the clock can influence people's risk of diabetes.

"We found very rare variants of the MT2 gene that have a much larger effect than more common variants discovered before. Although each mutation is rare, they are common in the sense that everyone has a lot of very rare mutations in their DNA. Cataloguing these mutations will enable us to much more accurately assess a person's risk of disease based on their genetics."

In the study, the Imperial team and their collaborators at several institutions in the UK and France examined the MT2 gene in 7,632 people to look for more unusual variants that have a bigger effect on disease risk. They found 40 variants associated with type 2 diabetes, four of which were very rare and rendered the receptor completely incapable of responding to melatonin. The scientists then confirmed the link with these four variants in an additional sample of 11,854 people.

Professor Froguel and his team analysed each mutation by testing what effect they have on the MT2 receptor in human cells in the lab. The mutations that completely prevented the receptor from working proved to have a very big effect on diabetes risk, suggesting that there is a direct link between MT2 and the disease.

The research was funded by the Wellcome Trust, the National Institute for Health Research and the Medical Research Council in the UK and the Agence National de la Recherche, the Contrat de Projets Etat-Région Nord-Pas-De-Calais, the Société Francophone du Diabète, the Fondation Recherche Médicale and the Centre National de la Recherche Scientifique in France.

For further information please contact:

Sam Wong
Research Media Officer
Imperial College London
Email: sam.wong@imperial.ac.uk
Tel: +44(0)20 7594 2198
Out of hours duty press officer: +44(0)7803 886 248
Notes to editors:
1. Journal reference
A. Bonnefond et al. 'Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes' Nature Genetics, published online 29 January 2012.

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Website: www.imperial.ac.uk
Twitter: www.twitter.com/imperialspark
Podcast: www.imperial.ac.uk/media/podcasts
3. About the Medical Research Council
For almost 100 years the Medical Research Council has improved the health of people in the UK and around the world by supporting the highest quality science. The MRC invests in world-class scientists. It has produced 29 Nobel Prize winners and sustains a flourishing environment for internationally recognised research. The MRC focuses on making an impact and provides the financial muscle and scientific expertise behind medical breakthroughs, including one of the first antibiotics penicillin, the structure of DNA and the lethal link between smoking and cancer. Today MRC funded scientists tackle research into the major health challenges of the 21st century. www.mrc.ac.uk

Sam Wong | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>