Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bochum’s researchers discover proton diode

02.09.2010
Water is an active element in proteins
Report in Angewandte Chemie

Biophysicists in Bochum have discovered a diode for protons: just like the electronic component determines the direction of flow of electric current, the “proton diode” ensures that protons can only pass through a cell membrane in one direction. Water molecules play an important role here as active components of the diode.

The researchers led by Prof. Dr. Klaus Gerwert (Chair of Biophysics at the RUB) were able to observe this through a combination of molecular biology, X-ray crystallography, time-resolved FTIR spectroscopy and biomolecular simulations. They report in the current international online edition of the journal Angewandte Chemie.

Protons drive the protein turbines

The proton diode plays an important role in the energy production of cells. Light-driven proton pumps - certain proteins that traverse the cell membrane - eject protons out of the cell, so that excess pressure is generated outside “much like the water pressure at a dam”, explains Prof. Gerwert. Elsewhere, the protons push back into the cells to compensate the concentration gradient, and thereby drive the turbines of the cell, proteins known as ATPases. The energy thus released is converted into the universal fuel of the cells, ATP (adenosine triphosphate). “This process is a kind of archaic photosynthesis” explains Prof. Gerwert. “The light energy is ultimately converted into usable energy for the organism”.

We used to believe in chance

The details of these processes are the subject of research. In particular, the role of water molecules in proteins has long been unclear. “Previously it was believed that the water molecules blundered into the proteins by chance, and fulfilled no particular function”, says Gerwert. Manfred Eigen, born in Bochum in 1967, was awarded the Nobel Prize for chemistry because he was able to explain why water and ice protons are such rapid conductors. The current work shows that proteins also use precisely this mechanism and that the water molecules do indeed carry out an active function in the protein.

Water is as important as amino acids

This result supports the hypothesis drawn up by Klaus Gerwert in 2006 in Nature that protein-bound water molecules are just as important catalytic elements for the function of proteins as amino acids, the building blocks of life. Consequently, the Bochum biophysicists have devoted their work in Angewandte Chemie to Manfred Eigen. Eigen also published his central thesis on proton transfer in water in Angewandte Chemie in 1964. Klaus Gerwert was inspired by Manfred Eigen’s winter seminars in Klosters.

Film instead of fixed image

The Bochum researchers were able to achieve their results in an interdisciplinary approach through a combination of molecular biology, X-ray crystallography, time-resolved FTIR spectroscopy and biomolecular simulations. This combination shows the dynamic processes in the protein after light excitation with atomic resolution. “You can track how the proton is transported from the central proton binding site inside the protein via an amino acid and then via a protonated water cluster to the membrane surface”, says Prof. Gerwert. The interdisciplinary approach is now expanding the classical methods of structural biology, X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR), as it provides a complete film and not just fixed images of proteins. The experiments in Bochum were supplemented by computer simulations in Shanghai. Klaus Gerwert is both a professor at the RUB and Director of the Max Planck Partner Institute for Computational Biology in Shanghai.

Bibliographic record

Wolf, S., Freier, E., Potschies, M., Hofmann, E. and Gerwert, K.: “Directional Proton Transfer in Membrane Proteins Achieved through Protonated Protein-Bound Water Molecules: A Proton Diode” Angewandte Chemie International Edition, DOI: 10.1002/anie.201001243

Garczarek, F., Gerwert, K.: “Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy”. In: Nature 439, 109-112 (2006)

Further information

Prof. Dr. Klaus Gerwert, Chair of Biophysics at the Ruhr-Universität Bochum, 44780 Bochum, ND 04/596, Tel. 0234/32-24461, gerwert@bph.rub.de

Editor: Meike Drießen

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>