Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The blue blood of the emperor scorpion x-rayed

22.06.2012
Biologists from Mainz University are the first to successfully crystallize the hemocyanin of the emperor scorpion to shed new light on the structure and active site of the giant oxygen transport protein

The emperor scorpion (Pandinus imperator) is not only one of the biggest scorpions in the world, but it also has one remarkably large protein, namely hemocyanin. Hemocyanin is a protein complex made up of 24 subunits that functions as blood pigment. It is one of the largest known proteins, comparable in size to ribosomes or even small viruses.


Hemocyanin of the emperor scorpion: model of the 24-meric protein complex and electron density at the active site where oxygen binding takes place.
Abb./©: E. Jaenicke et al (2012), PLoS One 7(3):e32548

For the first time ever, scientists from Johannes Gutenberg University Mainz in Germany have now successfully grown crystals from the emperor scorpion’s hemocyanin. With the help of x-rays, these crystals allow for a more precise analysis of the structure of the protein. Up to now, cryo-electron microscopy has primarily been used to examine large protein structures such as hemocyanin.

This method has its disadvantages, however, because its resolution is not sufficient to be able to differentiate between single atoms. With x-ray crystallography, on the other hand, protein structure can be more precisely determined. It is even possible to determine the spatial arrangement of individual atoms. Scientists rely on this knowledge about the detailed molecular structure of these protein complexes in order to be able to understand how these proteins function.

Hemocyanins are extraordinarily large respiratory proteins that transport oxygen in the blood of mollusks and arthropods. While these blue blood proteins bind oxygen between two copper atoms, human hemoglobin binds oxygen to iron atoms. Hemocyanin fascinates biologists because, depending on the animal species, up to 160 oxygen binding sites within a single protein complex must communicate with one another in order to bind, transport, and release oxygen in the blood. Referred to as cooperativity, this phenomenon occurs only in nature and could potentially be used in nanotechnology applications to build molecular switches. Structure determination at an atomic resolution is necessary in order to be able to understand this process in detail.

For the first time ever, Professor Dr. Elmar Jaenicke from the Institute of Molecular Biophysics at Johannes Gutenberg University Mainz has managed to crystallize the blue hemocyanin protein complex from the emperor scorpion. This is the decisive first step toward successful x-ray structure determination because protein crystals are necessary to diffract x-rays so that the structure of the protein can be determined. Crystallization, however, is especially difficult for large protein complexes. "It is a little bit like a game of chance," Jaenicke describes the crystallization process, because the process is dependent on a number of factors such as the pH-level, the salinity of the solution, or the temperature. "The decisive step is always crystal nucleation," which, according to Jaenicke, can take months and requires a lot of patience. Sometimes, it even takes several years to optimize the conditions for crystallization. This is the reason why so far only a handful of molecular structures of very large protein complexes have been solved using x-ray structure determination worldwide. In fact, one of these structural analyses – namely that of the ribosome – was awarded the Nobel Prize in 2009.

The crystals are measured in the x-ray beam, and the structure is then determined through complex calculations based on the scattered x-rays. At first, Jaenicke and his team of scientists were able to attain a mid-resolution (6.5 ångströms) structure for the emperor scorpion's protein with which secondary structures such as α-helices could be seen, but other elements, such as single amino acids, could not yet be ascertained. In layman's terms: If the protein is a brick house and a telescope is used to try to look at its structure from far away, the windows, doors, and the mailbox would be visible at the current resolution, but the arrangement of the individual bricks would not. "This was our starting point and now we can already see parts of the active site of the molecule. With further improvements to our crystals, we are well on our way to achieving an atomic resolution that is not possible with any other method." According to Jaenicke, the oxygen binding protein from the emperor scorpion would then be one of the five largest structures to have been deciphered using x-ray structure analysis to date.

Johannes Gutenberg University Mainz has the ideal infrastructure to support this type of structural research on very large protein complexes which can only be done at a few research institutes around the world. In Mainz, x-ray structure determination projects in the research groups of Professor Dr. Heinz Decker and Professor Dr. Elmar Jaenicke at the Institute of Molecular Biophysics cover the atomic resolution range, cryo-electron microscopy studies in the research group of Professor Dr. Jürgen Markl at the Institute of Zoology take care of the mid-resolution range. The new rotating anode x-ray generator used at the Institute of Molecular Biophysics is also ideal for determination of the structure of these giant molecules because it produces focused x-ray beams with an intensity comparable to that of second-generation synchrotron beamlines.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15460.php
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0032548

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>