Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood vessels instruct brain development

24.08.2018

Neurovascular communication in the brain

Function and homeostasis of the brain relies on communication between the complex network of cells, which compose this organ. Consequently, development of the different groups of cells in the brain needs to be coordinated in time and space.


Blood vessels in red in close communication with proliferating neuronal cells in the mouse cortex at embryonic day 10

Photo: Cecilia Llao-Cid

The group of Amparo Acker-Palmer (Buchmann Institute of Molecular Life Sciences and the Institute of Cell Biology and Neuroscience, Goethe University) reported in a Research Article in the last issue of the journal Science a novel function of blood vessels in orchestrating the proper development of neuronal cellular networks in the brain.

It is known that vascularization of the brain is necessary to provide neurons and glial cells with oxygen and nutrients important for the metabolic support of neuronal networks. “For several years, we knew that the vascular and nervous systems used very similar vocabulary to develop and function and therefore we postulated that such a common vocabulary could be used to ensure that both systems co-developed in synchronicity and communicated with each other for proper brain function,” explained Acker-Palmer.

To study the communication of the blood vessels and neuronal cells the Acker-Palmer group focused on different aspects of neurovascular development. First, they used the vascularization of the mouse retina as a well-established method to investigate molecules important for vascular growth.

Using this method, they discovered that a molecule, Reelin, that had been previously shown to influence neuronal migration was also able to independently influence the growth of vessels using a very similar signaling mechanism by activating the ApoER2 receptor and the Dab1 protein expressed in endothelial cells.

A very important structure in the brain is the cerebral cortex, which plays a key role in all basic functions such as memory, attention, perception, language and consciousness. Neuronal cells in the cerebral cortex are organized in layers and this organization is established during embryonic development.

“We decided to eliminate exclusively the Reelin signaling cascade from the endothelial cells and see how this influenced the arrangement of neurons and glial cells in the cerebral cortex,” said Acker-Palmer.

Using this system, the scientists revealed the astonishing finding that endothelial cells instruct neurons as to their correct positioning in the cerebral cortex. Mechanistically, they could show that endothelial cells secrete laminins that are deposited in the extracellular matrix surrounding the vessels to anchor properly the glial cell fibers that are necessary for proper neuronal migration and for the proper development of the cerebral cortex.

In the mature brain, glial cells also wrap around the blood capillaries and prevent harmful substances from the blood stream from entering the brain. This is known as the “blood brain barrier” and it is an essential structure that develops in the brain to keep homeostasis. Importantly, Acker-Palmer and her team also showed that the same signaling cascades used by endothelial cells in the cerebral cortex to orchestrate neuronal migration are used to establish communication at the blood brain barrier.

“Several neuropsychiatric and neurodegenerative disorders have been associated with abnormal neurovascular communication. Therefore, understanding the signaling pathways and mechanisms involved in such communication is fundamental to finding new approaches for treating dementia and mental illness.”

Publication: Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system
DOI: 10.1126/science.aao2861
(Segarra et al., Science 361, eaao2861 (2018).

Picture to Download: www.uni-frankfurt.de/73456362
Caption: Blood vessels in red in close communication with proliferating neuronal cells in the mouse cortex at embryonic day 10 (Photo: Cecilia Llao-Cid).

Information: Prof. Amparo Acker-Palmer, Institute of Cellular Biology and Neuroscience, Buchmann Institute of Molecular Life Sciences, Campus Riedberg, Tel.: (069) 798-42563, Acker-Palmer@bio.uni-frankfurt.de

Wissenschaftliche Ansprechpartner:

Prof. Amparo Acker-Palmer, Institute of Cellular Biology and Neuroscience, Buchmann Institute of Molecular Life Sciences, Campus Riedberg, Tel.: (069) 798-42563, Acker-Palmer@bio.uni-frankfurt.de

Originalpublikation:

Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system
DOI: 10.1126/science.aao2861
(Segarra et al., Science 361, eaao2861 (2018).

Weitere Informationen:

https://aktuelles.uni-frankfurt.de/englisch/blood-vessels-instruct-brain-develop...

Jennifer Hohensteiner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>