Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood Mystery Solved

24.02.2012
You probably know your blood type: A, B, AB or O. You may even know if you’re Rhesus positive or negative. But how about the Langereis blood type? Or the Junior blood type? Positive or negative? Most people have never even heard of these.
Yet this knowledge could be “a matter of life and death,” says University of Vermont biologist Bryan Ballif.

While blood transfusion problems due to Langereis and Junior blood types are rare worldwide, several ethnic populations are at risk, Ballif notes. “More than 50,000 Japanese are thought to be Junior negative and may encounter blood transfusion problems or mother-fetus incompatibility,” he writes.

But the molecular basis of these two blood types has remained a mystery — until now.

In the February issue of Nature Genetics, Ballif and his colleagues report on their discovery of two proteins on red blood cells responsible for these lesser-known blood types.

Ballif identified the two molecules as specialized transport proteins named ABCB6 and ABCG2.

“Only 30 proteins have previously been identified as responsible for a basic blood type,” Ballif notes, “but the count now reaches 32.”

The last new blood group proteins to be discovered were nearly a decade ago, Ballif says, “so it’s pretty remarkable to have two identified this year."

Both of the newly identified proteins are also associated with anticancer drug resistance, so the findings may also have implications for improved treatment of breast and other cancers.

Cross-border science

As part of the international effort, Ballif, assistant professor in the biology department, used a mass spectrometer at UVM funded by the Vermont Genetics Network. With this machine, he analyzed proteins purified by his longtime collaborator, Lionel Arnaud at the French National Institute for Blood Transfusion in Paris, France.

Ballif and Arnaud, in turn, relied on antibodies to Langereis and Junior blood antigens developed by Yoshihiko Tani at the Japanese Red Cross Osaka Blood Center and Toru Miyasaki at the Japanese Red Cross Hokkaido Blood Center.

After the protein identification in Vermont, the work returned to France. There Arnaud and his team conducted cellular and genetic tests confirming that these proteins were responsible for the Langereis and Junior blood types. “He was able to test the gene sequence,” Ballif says, “and, sure enough, we found mutations in this particular gene for all the people in our sample who have these problems."

Transfusion troubles

Beyond the ABO blood type and the Rhesus (Rh) blood type, the International Blood Transfusion Society recognizes twenty-eight additional blood types with names like Duffy, Kidd, Diego and Lutheran. But Langereis and Junior have not been on this list. Although the antigens for the Junior and Langereis (or Lan) blood types were identified decades ago in pregnant women having difficulties carrying babies with incompatible blood types, the genetic basis of these antigens has been unknown until now.

Therefore, “very few people learn if they are Langereis or Junior positive or negative,” Ballif says.

“Transfusion support of individuals with an anti-Lan antibody is highly challenging,” the research team wrote in Nature Genetics, “partly because of the scarcity of compatible blood donors but mainly because of the lack of reliable reagents for blood screening.” And Junior-negative blood donors are extremely rare too. That may soon change.

With the findings from this new research, health care professionals will now be able to more rapidly and confidently screen for these novel blood group proteins, Ballif wrote in a recent news article. "This will leave them better prepared to have blood ready when blood transfusions or other tissue donations are required," he notes.

“Now that we know these proteins, it will become a routine test,” he says.

A better match

This science may be especially important to organ transplant patients. “As we get better and better at transplants, we do everything we can to make a good match,” Ballif says. But sometimes a tissue or organ transplant, that looked like a good match, doesn’t work — and the donated tissue is rejected, which can lead to many problems or death.

“We don’t always know why there is rejection,” Ballif says, “but it may have to do with these proteins.”

The rejection of donated tissue or blood is caused by the way the immune system distinguishes self from not-self. “If our own blood cells don’t have these proteins, they’re not familiar to our immune system,” Ballif says, so the new blood doesn’t “look like self” to the complex cellular defenses of the immune system. “They’ll develop antibodies against it,” Ballif says, and try to kill off the perceived invaders. In short, the body starts to attack itself.

“Then you may be out of luck,” says Ballif, who notes that in addition to certain Japanese populations, European Gypsies are also at higher risk for not carrying the Langereis and Junior blood type proteins.

“There are people in the United States who have these challenges too,” he says, “but it’s more rare.”

Other proteins

Ballif and his international colleagues are not done with their search. “We’re following up on more unknown blood types,” he says. “There are probably on the order of 10 to 15 more of these unknown blood type systems — where we know there is a problem but we don’t know what the protein is that is causing the problem.”

Although these other blood systems are very rare, “if you’re that one individual, and you need a transfusion," Ballif says, "there’s nothing more important for you to know.”

Joshua Brown | EurekAlert!
Further information:
http://www.uvm.edu

More articles from Life Sciences:

nachricht Selectively Reactivating Nerve Cells to Retrieve a Memory
01.06.2020 | Universität Heidelberg

nachricht CeMM study reveals how a master regulator of gene transcription operates
01.06.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>