Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking key enzyme in cancer cells could lead to new therapy

02.08.2013
Researchers from the University of Illinois at Chicago College of Medicine have identified a characteristic unique to cancer cells in an animal model of cancer — and they believe it could be exploited as a target to develop new treatment strategies.

An enzyme that metabolizes the glucose needed for tumor growth is found in high concentrations in cancer cells, but in very few normal adult tissues. Deleting the gene for the enzyme stopped the growth of cancer in laboratory mice, with no associated adverse effects, reports Nissim Hay, UIC professor of biochemistry and molecular genetics, and his colleagues in the August 12 issue of Cancer Cell.

Targeting glucose metabolism for cancer therapy — while avoiding adverse effects in other parts of the body — has been a “questionable” strategy, Hay said. But he and his coworkers showed that the glucose-metabolism enzyme hexokinase-2 can be almost completely eliminated in adult mice without affecting normal metabolic functions or lifespan.

Hexokinase-2 is abundant in embryos but absent in most adult cells, where related enzymes take over its role in metabolism. One of the changes that mark a cell as cancerous is expression of the embryonic enzyme. Hay and his colleagues showed that the embryonic version is required for cancer cells to proliferate and grow, and that eliminating it halts tumor growth.

They developed a mouse strain in which they could silence or delete the HK2 gene in the adult animal, and they found that these mice could not develop or sustain lung or breast cancer tumors but were otherwise normal and healthy.

“We have deleted the HK2 gene systemically in these mice, and they have been living for more than two years now. Their lifespan is the same as normal mice,” Hay said.

The researchers also looked at human lung and breast cancer cells in the lab, and found that if they eliminated all HK2, the cells stopped growing.

“We think that the process we used to delete the HK2 gene is not absolutely perfect, so there must be some low levels of HK2 in the mice. But that seems to be enough for the cells that use HK2, and the therapeutic effects on tumors in these mice are stable.”

Hay thinks the enzyme is involved in making the building-blocks for the DNA of cancer cells, which need lots of all cellular components as they rapidly divide.

“Without HK2, the cancer cells don’t make enough DNA for new cells, and so tumor growth comes to a standstill,” said Hay.

Krushna C. Patra, Qi Wang, Prashanth Bhaskar, Luke Miller, Zebin Wang from UIC; Will Wheaton, Navdeep Chandel from Northwestern University Feinberg School of Medicine; Markku Laasko from the University of Eastern Finland, William Muller from McGill University in Montreal; Eric Allen, Abhishek Jha, Gromoslaw Smolen, Michelle Clasquin from Agios Pharmaceuticals; and Brooks Robey from Dartmouth Medical School also contributed to this research.

The research was supported by VA Merit Award BX000733, by NIH grants AG016927 and CA090764, and in part by the UIC Center for Clinical and Translational Sciences Award Number ULRR029879, and grant from the Chicago Biomedical Consortium with support from The Searle Funds at The Chicago Community Trust to Hay. Patra was supported by Defense Department predoctoral fellowship W81XWH-11-1-0006.

Sharon Parmet | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>