Bladder cells feel stretch

Japanese research group led by Prof. Makoto Tominaga and Dr. Takaaki Sokabe (National Institute for Physiological Sciences: NIPS), and Prof. Masayuki Takeda, Dr. Isao Araki and Dr. Tsutomu Mochizuki (Yamanashi Univ.), found that bladder urothelial cells have a sensor for stretch stimulation. Their finding was reported in the Journal of Biological Chemistry published on Aug 7, 2009.

Bladder is known to release ATP that activates micturition reflex pathway during urine storage. However, it has been unknown how urothelial cells sense bladder distension. The research group examined the function of 'TRPV4' protein abundantly expressed in urothelial cells. The group developed a special apparatus to measure cell responses upon stretch stimulation, which mimics bladder distension.

Upon stretch stimulation, robust Ca2+ influx and following ATP release were observed in urothelial cells. These phenomena were almost completely attributed to TRPV4 activation, since such responses were eliminated by a TRPV4 inhibitor and reduced in TRPV4-deficient urothelial cells.

Dr. Sokabe said, “This is the first report to show that TRPV4 is a primal stretch-detector in urothelial cells. Given that TRPV4 is critically involved in the sensing mechanism in the bladder, development of chemicals modulating TRPV4 activity may be useful for treatment of bladder disorders such as overactive bladder and pollakiuria.”

Media Contact

Takaaki Sokabe EurekAlert!

More Information:

http://www.nips.ac.jp

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors