Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biotechnology: Triggered by light, a novel way to switch on an enzyme


In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.

In the model: blue light triggers a special monooxygenase reaction in an enzyme. This kind of activation was hitherto unknown in enzymology.

Steffen L. Drees

A topic that is currently being widely discussed is photoinduced catalysis, in which researchers harness the ability of nature to start biochemical reactions with the aid of light. What they need for this purpose is enzymes which can be activated by means of light.

It is not, however, a simple matter to incorporate the few naturally occurring light-activatable enzymes into biotechnological processes, as they are highly specialised and difficult to manipulate.

Researchers at the Universities of Münster and Pavia have now identified an enzyme which becomes catalytically active when exposed to blue light and which immediately triggers a reaction hitherto unknown in enzymology.

The reaction in question is a special monooxygenase reaction, in which an oxygen atom is transferred to the substrate. The reaction is supported by a “helper molecule” which stepwise delivers two electrons. Up to now, it had been assumed that such a light-dependent reaction cannot occur in enzymes.

“The enzyme we have identified belongs to a very large family of enzymes, and it is realistic to assume that other enzymes can be produced, by means of genetic manipulations, which can be activated by light too and which can be used in a very wide range of applications,” says Dr. Steffen L. Drees, who headed the study and works at the Institute of Molecular Microbiology and Biotechnology at Münster University.

One possible application, for example, is in the field of medicine, where pharmaceuticals could be activated by means of light. The study has been published in the journal “Nature Communications”.

Background and method:

In their study, the researchers investigated the enzyme PqsL, which is found in the opportunistic pathogen Pseudomonas aeruginosa and, originally, is not light-dependent. The researchers stimulated the enzyme with blue light and analysed the reaction using, for example, a combination of time-resolved spectroscopic and crystallographic techniques.

The enzyme examined belongs to the family of flavoproteins and – typically for this family of proteins – uses a derivative of vitamin B2 as a so-called cofactor for catalysing the incorporation of oxygen into organic molecules. The cosubstrate NADH (reduced nicotinamide adenine dinucleotide) is needed as a “helper molecule” for the enzymatic reaction, providing the necessary electrons.

The reaction mechanism the researchers observed in their study is new, however, and so far, unique. Activated by the exposure to light in the flavin-NADH complex, NADH transfers a single electron to the protein-bound flavin. In this way, a flavin radical is created – a highly reactive molecule which is characterised by an unpaired electron. Using time-resolved spectroscopy, the researchers were able to observe how the molecule formed and changed its state.

The flavin radical has a very negative redox potential, which means that it has a large capacity for transferring electrons to reaction partners. “Because of this property, we assume that the flavin radical can also enable additional reactions to take place which would expand the catalytic potential of this enzyme – as well as of other enzymes too, perhaps,” says group leader Prof. Susanne Fetzner.

The enzyme identified is the only one so far which is not naturally photoactive, and carries out a light-independent reaction in the bacterial cell. “The three-dimensional structure of the enzyme shows that the outward-facing flavin co-factor might be the key to photoactivation,” says Simon Ernst, first author of the study.

Photoactive enzymes enable a large number of applications – for example, multi-step catalysis in a one-vessel reaction or spatially resolved catalysis, for example to functionalise surfaces in certain patterns. They can also be useful for so-called prodrug activation in the body or on the skin – a process in which a pharmacological substance becomes active only after metabolization in the organism.


The study received funding from the German Research Foundation, the Italian Ministry of Education, Universities and Research and from the European Union – as part of the “Horizon 2020” programme.

Wissenschaftliche Ansprechpartner:

Dr. Steffen L. Drees (University of Münster)
Phone: +49 251 83-38 364


S. Ernst et al. (2020): Photoinduced monooxygenation involving NAD(P) H-FAD sequential single-electron transfer. Nature Communications; DOI: 10.1038/s41467-020-16450-y

Weitere Informationen: Original publication in "Nature Communications" Research group Prof. Susanne Fetzner at Münster University

Svenja Ronge | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Did nerve cells evolve to talk to microbes?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Study reveals how bacteria build essential carbon-fixing machinery
09.07.2020 | University of Liverpool

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

Did nerve cells evolve to talk to microbes?

10.07.2020 | Life Sciences

Cherned up to the maximum

10.07.2020 | Physics and Astronomy

Road access for all would be costly, but not so much for the climate

10.07.2020 | Ecology, The Environment and Conservation

Science & Research
Overview of more VideoLinks >>>