Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biophysicists resolve true structure of highly promising optogenetic protein KR2 rhodopsin


A team of biophysicists from Russia, Germany, and France, featuring researchers from the Moscow Institute of Physics and Technology, has discovered and studied the structure of the KR2 rhodopsin under physiological conditions. This pioneering work breaks ground for a future breakthrough in optogenetics, a highly relevant area of biomedicine with applications in neurological disease treatment and more. The fundamental discovery will lead to a new instrument for efficient therapy of depression, anxiety disorders, epilepsy, and Parkinson's disease. The paper reporting the study, in which MIPT biophysicists played a leading part, was published in Science Advances, a highly regarded journal of the American Association for the Advancement of Science.

Optogenetics is an entirely new area of biophysics and biomedicine, which investigates techniques for controlling the nerve and muscle cells in a living organism via light signals. Not long ago, the leading research journal Science hailed optogenetics as the "breakthrough of the decade."

KR2 rhodopsin monomer (left) and pentamer (right) in the cell membrane, shown as blue disks. In the monomer state, sodium transport is blocked, the orange pore does not permit ion uptake into the protein.

Credit: Kirill Kovalev et al./Science Advances

Optogenetic methods already enable a partial recovery of lost eyesight, hearing, and muscle control impaired by a neurological disease. Importantly, these techniques allow researchers to study neural networks in detail.

This refers not to computer networks but to those housed in the human brain and responsible for our emotions, decision-making, and other fundamental processes.

Several years ago, researchers discovered a new type of ion transporter -- the KR2 rhodopsin -- in the cell membrane of the marine bacterium Krokinobacter eikastus. The newly found protein is sensitive to light, making it useful for optogenetics. Driven by light, such proteins can facilitate the translocation of charged particles such as ions across the cell membrane.

By introducing such transporters into the cell, researchers can then use light pulses to manipulate the potential of the neuron cell membrane, controlling its activity. KR2 was shown to selectively transport a particular kind of particles -- sodium ions -- outside the cell. Rather than allow the passage of these ions in both directions, the protein performs active transport, serving as a "pump."

Mutant forms of KR2 also showed potassium-pumping activity. By implanting these pumps into the cell membrane, the whole scope of neuron activity could theoretically be controlled.

The wave of research that followed the discovery of the new molecular pump faced some pretty mysterious properties of the rhodopsin. Several research groups discovered and described a total of five different structures of the promising protein. Notably, in some of these structures five KR2 molecules form a stable pentamer, while in others only the protein monomer is present (figure 1).

"So the dramatic question was: Which of these structures should be considered the right one?" said MIPT doctoral student Kirill Kovalev, a lead author of the study. "In fact, the structures turned out to be pretty similar, but the devil's in the details, which determine the protein's possible applications in science and the clinical practice."

Led by MIPT biophysicists, the team found what gives rise to the confusing variety of protein structures. It turned out that the research groups studying KR2 had crystallized the protein at different conditions. The unique protein is originally produced by an ocean bacterium native to a very special environment.

It lives in water with a specific salinity, acidity, and hydrogen ion concentration (pH). These conditions are a prerequisite for the protein to do what researchers expect it to do -- that is, pump sodium ions, while also forming pentamers in the cell membrane. The protein's numerous "false" structures turned out to either be crystallization artifacts or only correspond to the conditions that virtually disable the sodium-pumping activity of KR2, which makes it highly attractive for the global optogenetics community.

"For the first time, we have simulated the physiological conditions for KR2 existence and functioning. As a result, we obtained the 'correct' structure of the new protein, which corresponds to its native state. We showed that the functional unit of the protein is a pentamer," explained Valentin Gordeliyfrom the Institute of Structural Biology in Grenoble. "On top of that, we found an explanation for the contradictions between previous structural studies of the protein."

The KR2 rhodopsin is revolutionary for optogenetics, and knowing its correct structure under physiological conditions is fundamental both for understanding the mechanisms behind its functioning and for exploring the nervous system by modeling new optogenetic tools and applying them in the medical practice.


The study reported in this story featured researchers from the Moscow Institute of Physics and Technology, the Institute of Structural Biology of Grenoble University, the European Synchrotron Radiation Facility, Research Center Juelich, the University of Aachen, and Max Planck Institute of Biophysics.

Media Contact

Ilyana Zolotareva


Ilyana Zolotareva | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Towards better anti-cancer drugs: New insights into CDK8, an important human oncogene
28.01.2020 | Universität Bayreuth

nachricht Unique centromere type discovered in the European dodder
28.01.2020 | Leibniz Institute of Plant Genetics and Crop Plant Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

Latest News

Towards better anti-cancer drugs: New insights into CDK8, an important human oncogene

28.01.2020 | Life Sciences

Rice lab turns trash into valuable graphene in a flash

28.01.2020 | Materials Sciences

AI can jump-start radiation therapy for cancer patients

28.01.2020 | Health and Medicine

Science & Research
Overview of more VideoLinks >>>