Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical foundation supports technology aimed at destroying cancer cells

18.08.2008
A new technology, using electric pulses to destroy cancer tissue and named by NASA Tech Briefs as one of seven key technological breakthroughs of 2007, is receiving additional support aimed at moving the procedure to the marketplace.
One of its lead developers, Rafael V. Davalos, a faculty member of the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences (SBES), received a $240,000 grant from the Wallace H. Coulter Foundation and $25,000 from the Wake Forest Comprehensive Cancer Center.

Davalos' grant from Coulter is an Early Career Translational Research Award in Biomedical Engineering. This early career awards program provides funding for assistant professors in established biomedical engineering departments within North America. The award seeks to support biomedical research that Coulter considers promising ­­-- with the goal of progressing toward commercial development.

The technology, irreversible electroporation (IRE), was invented by Davalos and Boris Rubinsky, a bioengineering professor at the University of California, Berkeley.

Electroporation is a phenomenon that increases the permeability of a cell from none to a reversible opening to an irreversible opening. With the latter, the cell will die. For decades, biologists have used reversible electroporation in laboratories to introduce drugs and genes into cells while trying to avoid irreversible electroporation. By contrast, biomedical engineers Davalos and Rubinsky are now using irreversible electroporation to target cancer cells in the body.

Irreversible electroporation would be a minimally invasive surgical focal-ablation technique that could remove the undesirable tissue without the use of heat such as radiation. The irreversible electroporation procedure involves placing small needles near the targeted region. The needles deliver a series of low energy microsecond electric pulses to the targeted tissue and the area treated can be monitored in real time using ultrasound. In laboratory testing, irreversible electroporation destroyed targeted tissue with sub-millimeter resolution, and it proved easy to control and to be precise.

Furthermore, "the procedure spares nerves and major blood vessels, enabling treatment in otherwise inoperable areas," Davalos, the 2006 recipient of the Hispanic Engineer National Achievement Award for Most Promising Engineer, added.

Davalos and his colleagues published the first experiments on using irreversible electroporation on tumors in the November 2007 issue of PLoS ONE. Their optimal parameters achieved complete regression in 92 percent of the treated tumors in vivo in preclinical mouse models. These results were achieved with a single treatment that lasted less than five minutes. Collaborator Lluis M. Mir, director of the Laboratory of Vectorology and Gene Transfer research of the Institut Gustave Rousssy, the leading cancer research center in Europe, and one of the Centre National de la Recherche Scientifique (CNRS), led the study.

In April 2008, Gary Onik (http://www.hopeforprostatecancer.com/gon-onik.asp), a radiologist with Florida Hospital and Rubinsky conducted a pilot study (http://www.hopeforprostatecancer.com/) on five people on soft tissue in the prostate to prove the safety of the procedure on humans.

Davalos' collaborators on the Coulter Foundation grant are: Mir; John Robertson, professor of biomedical science; and John Rossmeisl, an assistant professor of small animal clinical services, both of whom are in the Virginia-Maryland Regional College of Veterinary Medicine and Waldemar Debinski of Wake Forest.

Davalos' Virginia Tech collaborators on the grant from Wake Forest are Robertson and Nichole Rylander, assistant professor of mechanical engineering and also a member of the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences. Wake Forest researcher Suzy Torti, of its cancer biology department, is also working with the group.

Lynn A. Nystrom | VT News
Further information:
http://www.sbes.vt.edu
http://www.vetmed.vt.edu

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>