Biomechanical cell properties highly relevant for cancer research

Based on material’s properties of (cancer) cells the physicist Prof. Dr. Josef A. Käs as well as the medical scientist Prof. Dr. Dr. Michael Höckel came to the following results which could give rise to considerably changes in cancer therapies:

The research team found out that the biomechanical properties of tumor cells promote their growth as well as their invasion within the human body. Three biomechanical properties are in the focus of these observations: First, the outer cytoskeleton, the so called actin cortex of cancer cells is much softer and supports fast growth and cell division.

“We could evidence such behavior in a first clinical study, for example with Prof. Thorsten Remmerbach for oral cancer” claims the physicist. The second striking biomechanical property of cancer cells affects the tumor growth against the normal tissue surrounding the tumor: “Obviously, the cells do not have to stiffen linearly to grow against the environment. We can solve the apparent contradiction by considering that the soft actin cortex gets softer but nevertheless, it can resist high pressures exerted from the surroundings.

In return, elements of the cytoskeleton are pronounced which results in an
overall stiffening of the tumor.” The third biomechanical property considers the ability of metastasizing cancer cells to overcome boundaries between different tissues. “Normal cells usually favor to stay together,” Käs explains. Metastasizing cells can overcome the boundaries by very sensitive reaction on mechanical impulses and contraction. Thus, cancer cells quickly mix with other cells. Together with the ability of self-contraction these cancer cells can leave the primary tumor and metastasize.
The self-contraction is the central observation which is presented in “Nature” to the specialised public and researchers. From these and so far obtained scientific results new approached for diagnostic and therapy can be derived.

In reverse to the cell properties mentioned above, the researchers from Leipzig investigate agents which influence these properties to obtain new possibilities to suppress growth and invasion of tumor cells: “It is still a long way to go. However, we have new approaches for that,” Käs claims. His research is supported by the BMBF project AGESCREEN and EXPRIMAGE, as well as by the DFG Initiative of Excellence within the graduate school BuildMoNa.

The investigation of changes in physical, i.e. material, properties of cells during progression of cancer is an emerging field in physics redefining medical physics and now redefines itself based on material science. The University of Leipzig plays a leading role in this new field.

Meanwhile, the new findings were employed to apply for a patent with the title “Method for diagnosis and/or prognosis of cancer diseases by analysis of the mechanical properties of tumor cells.”

Event announcement:
The minisymposium „Physics of Cancer“ organized by the graduate school BuildMoNa, which is located at the physics and chemistry department of the University of Leipzig, will take place Oct. 25-26, 2010. Thus, world’s leading investigators in this field have accepted the invitation, such as Prof. Roland Eils, German Cancer Research Center Heidelberg (DKFZ), Prof. Francoise Brochard, Institut Curie (Paris), Prof. W. Losert, U.S. National Cancer Institut, as well as Prof. Dr. Dr. Michael Höckel, Medical Department, Universität Leipzig, and Josef A. Käs, Department of Physics and Earth Science, University of Leipzig.

The minisymposium will be opend by the major of Leipzig Burkhard Jung on Oct. 25th, 9 h at the University of Leipzig, Seminargebäude, Room 420, Universitätsstr. 1.

More information:
Prof. Dr. Josef A. Käs
Telefon: +49 341 97-32470
E-Mail: jkaes@physik.uni-leipzig.de

Media Contact

Dr. Manuela Rutsatz Universität Leipzig

More Information:

http://www.uni-leipzig.de/~pwm

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors