Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using biomarkers to identify and treat schizophrenia

12.07.2012
Researchers say lab-based tests may be boon to both clinicians and researchers

In the current online issue of PLoS ONE, researchers at the University of California, San Diego School of Medicine say they have identified a set of laboratory-based biomarkers that can be useful for understanding brain-based abnormalities in schizophrenia. The measurements, known as endophenotypes, could ultimately be a boon to clinicians who sometimes struggle to recognize and treat the complex and confounding mental disorder.

"A major problem in psychiatry is that there are currently no laboratory tests that aid in diagnosis, guide treatment decisions or help predict treatment response or outcomes," said Gregory A. Light, PhD, associate professor of psychiatry and the study's first author. "Diagnoses are currently based on a clinician's ability to make inferences about patients' inner experiences."

Diagnosing and treating schizophrenia is a particularly troubling challenge. The disorder, which affects about 1 percent of the U.S. population or roughly 3 million people, is characterized by a breakdown of normal thought processes and erratic, sometimes dangerous or harmful, behaviors.

"Schizophrenia is among the most severe and disabling conditions across all categories of medicine," said Light, who also directs the Mental Illness, Research, Education and Clinical Center at the San Diego VA Healthcare System.

The precise cause or causes of schizophrenia are not known, though there is a clear genetic component, with the disorder more common in some families.

Clinicians typically diagnose schizophrenia based upon inferences drawn from the patient's inner experiences. That is, their ability to describe what's happening inside their minds.

"But even the best clinicians struggle with diagnostic complexities based on sometimes fuzzy clinical phenomenology," said Light. The clinical challenge is compounded by the fact that "many schizophrenia patients have cognitive and functional impairments," said Light. They may not be able to reasonably explain how or what they think.

Light and colleagues investigated whether a select battery of neurophysiological and neurocognitive biomarkers could provide clinicians with reliable, accurate, long-term indicators of brain dysfunction, even when overt symptoms of the disorder were not apparent. These markers ranged from tests of attention and memory to physiological assessments of basic perceptual processes using scalp sensors to measure brain responses to simple sounds.

The researchers measured the biomarkers in 550 schizophrenia patients, and then re-tested 200 of the patients one year later. They found that most of the markers were significantly abnormal in schizophrenia patients, were relatively stable between the assessments and were not affected by modest fluctuations in clinical status of the patient.

Light said further research is required, including whether the endophenotypes can differentiate other psychiatric disorders, be used to anticipate patient response to different kinds of drugs or non-pharmacological interventions or even be used to predict which subjects are at high risk of developing a psychotic illness.

"We believe this paper is an important step towards validating laboratory-based biomarkers for use in future genomic and clinical treatment studies of schizophrenia," Light said.

Co-authors are Neal R. Swerdlow, Anthony J. Rissling and Marlena Pela, Department of Psychiatry, UCSD; Allen Radant, Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle; Catherine A. Sugar, Departments of Psychiatry and Biostatistics, UCLA; Joyce Sprock, Mark A. Geyer and David L. Braff, Mental Illness, Research, Education and Clinical Center, San Diego VA Healthcare System and Department of Psychiatry, UCSD.

Funding for this research came, in part, from National Institute of Mental Health grants MH042228, MH079777 and MH065571 and the Department of Veterans Affairs.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>