Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biology and chemistry combine to generate new antibiotics

28.11.2017

Combining the innovations of synthetic biology with biology and chemistry, a team of scientists at the University of Bristol have generated a brand-new platform that will allow the production of desperately needed brand-new antibiotics.

With resistance growing to existing antibiotics, there is a vital and urgent need for the discovery and development of new antibiotics that are cost effective.


Fruiting bodies from the mushroom Clitopilus passeckerianus generated in the laboratory.

Credit: University of Bristol

Promising developments are derivatives of the antibiotic pleuromutilin, with the core pleuromutilin isolated from the mushroom Clitopilus passeckerianus.

Pleuromutilin derivatives are potent antibacterial drugs but often require difficult chemical modifications.

In a new paper published today in Nature Communications, the Bristol team report the genetic characterisation of the steps involved in pleuromutilin biosynthesis through heterologous expression and generate a semi-synthetic pleuromutilin derivative with enhanced antibiotic activity.

This was achieved by taking the complete genetic pathway for pleuromutilin production, containing seven genes, from the mushroom, and rebuilding it in the industrially useful filamentous fungus Aspergillus oryzae, traditionally used to make soy sauce.

This then generated a unique platform of Aspergillus lines with combinations of the pathway genes to allow new compounds to be synthesized.

Professor Chris Willis, from the School of Chemistry, said: "This is a classic case where nature has produced something really useful, but combining nature with chemistry through a synthetic biology approach we are able to make things even better."

These new compounds are some of the only new class of antibiotics to join the market recently as human therapeutics.

Furthermore, with their novel mode of action and lack of cross-resistance, pleuromutilins and their derivatives represent a class with further great potential, particularly for treating resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and extensively drug resistant tuberculosis (XTB).

Professor Gary Foster from the School of Biological Sciences who led the team, with Dr Andy Bailey, added: "This research is very exciting as it also paves the way for future characterization of biosynthetic pathways of other basidiomycete natural products in ascomycete heterologous hosts.

"Many mushrooms have never even been examined and act as an untapped resource.

"The platform also opens up new possibilities of further chemical modification for the growing class of potent antibiotics."

Gary Foster | EurekAlert!

More articles from Life Sciences:

nachricht Neuronal circuits in the brain 'sense' our inner state
15.07.2020 | Technische Universität München

nachricht Novel test method detects coronavirus in highly diluted gargle samples
15.07.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Tiny bubbles make a quantum leap

15.07.2020 | Physics and Astronomy

Higher-order topology found in 2D crystal

15.07.2020 | Materials Sciences

Russian scientists have discovered a new physical paradox

15.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>