Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018

Precise methods of DNA 'packing' may affect gene expression

Scientists discovered another key to how DNA forms loops and wraps inside the cell nucleus -- a precise method of "packing" that may affect gene expression.


Interior of a cell showing the nucleus with the chromatin fiber (yellow) arranged in the three-dimensional space by loops formed by the CTCF protein (shown in pink). DNA is represented by thin blue lines on the chromatin.

Credit: Graphic by Victor Corces

The journal Science published the research by biologists at Emory University, showing that a process known as hemimethylation plays a role in looping DNA in a specific way. The researchers also demonstrated that hemimethylation is maintained deliberately -- not through random mistakes as previously thought -- and is passed down through human cell generations.

"In order for a protein called CTCF to make loops in the DNA, we discovered that it needs to have hemimethylated DNA close by," says Emory biologist Victor Corces, whose lab conducted the research. "Nobody had previously seen that hemimethylated DNA has a function."

Chromatin is made up of CTCF and other proteins, along with DNA and RNA. One role of chromatin is to fold and package DNA into more compact shapes. Growing evidence suggests that this folding process is not just important to fit DNA into a cell nucleus -- it also plays a role in whether genes are expressed normally or malfunction.

The Corces lab specializes in epigenetics: The study of heritable changes in gene function -- including chromatin folding -- that do not involve changes in the DNA sequence.

DNA methylation, for example, can modify the activity of DNA by adding methyl groups to both strands of the double helix at the site of particular base pairs. The process can be reversed through demethylation.

As cells divide they make a copy of their DNA. In order to do so, they have to untangle the two strands of DNA and split them apart. Each parental strand then replicates a daughter strand.

"When cells divide, it's important that they keep the methylation the same for both strands," Corces says, noting that altered patterns of methylation are associated with cancer and other diseases.

Hemimethylation involves the addition of a methyl group to one strand of the DNA helix but not the other. Some researchers observing hemimethylation have hypothesized that they were catching it right after cell division, before the cell had time to fully replicate to form a daughter strand. Another theory was that hemimethylation was the result of random mistakes in the methylation process.

Chenhuan Xu, a post-doctoral fellow in the Corces lab, developed new experimental methods for DNA methylome mapping to conduct the research for the Science paper. These methods allowed the researchers to observe hemimethylation on DNA in human cells in real-time before, during and after cell division. They also mapped it as the cells continued to replicate.

"If the parental DNA was hemimethylated, the daughter DNA was also hemimethylated at the same place in the genome," Corces says. "The process is not random and it's maintained from one cell generation to the next over weeks."

The researchers found that hemimethlyation only occurs near the binding sites of CTCF -- the main protein involved in organizing DNA into loops. "If we got rid of the hemimethlyation, CTCF did not make loops," Corces says. "Somehow, hemimethylation is allowing CTCF to make loops."

And when CTCF makes a loop, it does so by binding ahead, going forward in the DNA sequence, they observed.

"Research suggests that some disorders are associated with CTCF binding -- either mutations in the protein itself or with the DNA sequence where the protein binds," Corces says. "It comes back to the story of how important these loops are to the three-dimensional organization of chromatin, and how that organization affects the gene expression."

Carol Clark | EurekAlert!
Further information:
http://esciencecommons.blogspot.com/2018/03/biologists-unravel-another-mystery-in.html

Further reports about: CTCF DNA DNA sequence cell division cell nucleus human cell methyl methylation

More articles from Life Sciences:

nachricht DNA is held together by hydrophobic forces
23.09.2019 | Chalmers University of Technology

nachricht New method for the measurement of nano-structured light fields
23.09.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

Clarification of a new synthesis mechanism of semiconductor atomic sheet

23.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>