Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Find Link Between CGG Repeats and Mental Disorders

12.01.2009
CGG repeats not only stall the cell's replication process but also thwart the cell's capacity to repair and restart it. Tufts University researchers focused on this CGG repeat because it is associated with hereditary neurological disorders such as fragile X syndrome and FRAXE mental impairment.

Researchers have long known that some repetitive DNA sequences can make human chromosomes “fragile,” i.e. appearing constricted or even broken during cell divisions.

Scientists at Tufts University have found that one such DNA repeat not only stalls the cell's replication process but also thwarts the cell's capacity to repair and restart it. The researchers focused on this CGG repeat because it is associated with hereditary neurological disorders such as fragile X syndrome and FRAXE mental impairment.

In a study to be published in the January 2009 issue of the journal Nature Structural and Molecular Biology, Sergei Mirkin, White Family Professor of Biology at Tufts' School of Arts and Sciences, along with graduate students Irina Voineagu and Christine F. Surka and postdoctoral fellows Alexander A. Shishkin and Maria M. Krasilnikova, explored the link between CGG repeats and replication delays. Mirkin's research was funded by the National Institutes of Health.

Effect of palindromes

Past research from Mirkin’s lab had shown that peculiar long DNA sequences named palindromes change the shape of the molecule from a double helix into a hairpin-like structure and, as a result, stall replication. When this happens chromosomes can break during cell division.

For the new research, Mirkin and his team analyzed different cloned CGG repeats in a mammalian cell culture line called COS-1 and in budding yeast cells. The researchers found that short triplets do not cause any problems. When the repeats got longer, however, the replication machinery got jammed and stalled in both systems. Thus, replication stalling likely accounts for the chromosomal fragility. They believe that this stalling is due to the formation of a stable, hairpin-like DNA structure formed by long CGG repeats.

Abnormal structures disable cellular checkpoints

"Our cells have evolved elaborate 'checkpoint' mechanisms to detect replication blocks and trigger the instant 'restart' of DNA replication there," said Mirkin. "Are the CGG repeats causing the checkpoints to fail?"

With replication stalled, Mirkin and his research team found that the CGG repeats did not respond to the key checkpoint protein called Mrc1 in yeast or claspin in humans. Both proteins work to repair replication malfunctions during the S phase of the cell cycle. Apparently, the unusual structure of CGG repeats acts to escape the cellular checkpoints. As a consequence, chromosomes under-replicate, become fragile and break.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the Premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alex Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

In the ocean's twilight zone, tiny organisms may have giant effect on Earth's carbon cycle

19.07.2018 | Earth Sciences

Lying in a foreign language is easier

19.07.2018 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>