Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineered protein shows preliminary promise as new therapy for hemophilia

24.10.2011
Children's Hospital of Philadelphia study suggests strategy to bypass defect in hemophilia, may also benefit other bleeding disorders

A genetically engineered clotting factor that controlled hemophilia in an animal study offers a novel potential treatment for human hemophilia and a broad range of other bleeding problems.

The researchers took the naturally occurring coagulation factor Xa (FXa), a protein active in blood clotting, and engineered it into a novel variant that safely controlled bleeding in mouse models of hemophilia. "Our designed variant alters the shape of FXa to make it safer and efficacious compared to the wild-type factor, but much longer-lasting in blood circulation," said study leader Rodney A. Camire, Ph.D., a hematology researcher at The Children's Hospital of Philadelphia.

"The shape of the variant FXa changes when it interacts with another clotting factor made available following an injury," added Camire. "This increases the functioning of the protein which helps stop bleeding." Camire is an associate professor of Pediatrics in the Perelman School of Medicine at the University of Pennsylvania.

The study appears online today in Nature Biotechnology, and will be published in the journal's November 2011 print issue.

In hemophilia, an inherited single-gene mutation impairs a patient's ability to produce a blood-clotting protein, leading to spontaneous, sometimes life-threatening bleeding episodes. The two major forms of the disease, which occurs almost solely in males, are hemophilia A and hemophilia B, characterized by which specific clotting factor is deficient. Patients are treated with frequent infusions of clotting proteins, which are expensive and sometimes stimulate the body to produce antibodies that negate the benefits of treatment.

Roughly 20 to 30 percent of patients with hemophilia A and 5 percent of hemophilia B patients develop these inhibiting antibodies. For those patients, the conventional treatment, called "bypass therapy," is to use drugs such as factor VIIA and activated prothrombin complex concentrates (aPCCs) to restore blood clotting capability. But these agents are costly (as much as $30,000 per treatment) and not always effective. Camire added that, in the current animal study, they were able to show the variant protein is more effective at a lower dose than FVIIa.

The range of options for hemophilia patients could improve if the study results in animals were to be duplicated in humans. "The variant we have developed puts FXa back on the table as a possible therapeutic agent," said Camire. Naturally occurring (wild-type) FXa, due to its particular shape, is not useful as a therapy because normal biological processes shut down its functioning very quickly.

By custom-designing a different shape for the FXa protein, Camire's study team gives it a longer period of activity, while limiting its ability to engage in unwanted biochemical reactions, such as triggering excessive clotting. "This potentially could lead to a new class of bypass therapy for hemophilia, but acting further downstream in the clot-forming pathway than existing treatments," said Camire, who has investigated the biochemistry of blood-clotting proteins for more than a decade.

When infused into mice with hemophilia, the FXa variant reduced blood loss after injury, as it safely restored blood clotting ability. Further studies are necessary in large animal models to determine whether this approach can become a clinical treatment for hemophilia patients who have developed inhibitors, or even more broadly as a drug for uncontrolled bleeding in other clinical situations.

Funding support for this research came from the National Institutes of Health, Pfizer Inc., and the National Hemophilia Foundation. The first author of the study was Lacramioara Ivanciu, Ph.D., of The Children's Hospital of Philadelphia. Other co-authors with Camire were from Children's Hospital, Pfizer Inc., and the Perelman School of Medicine of the University of Pennsylvania.

"A zymogen-like factor Xa variant corrects the coagulation defect in hemophilia," Nature Biotechnology, published online Oct. 23, 2011, to appear in Nov. 2011 print edition. doi: 10.1038/nbt.1995

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 516-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>