Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioelectrochemical processes have the potential to one day replace petrochemistry

09.03.2015

Researchers at UFZ and the University of Queensland have found that the electrification of the white biotechnology is not merely a green dream, but an alternative to petrochemistry with realistic economical potential. Compared to classical sugar based bio-processes, bioelectrochemical processes promise improved yields, which could turn out to be a real game changer. The next generation of bio-production facilities may not only become more environmentally friendly, but also more economically competitive.

In contrast to the energy and fuel sectors that are influenced by government targets for green alternatives, the chemical industry is mainly driven by market mechanisms. Companies and consumers are generally not prepared to pay a green premium for products.


Bioreactor with upgrade kit for the bioelectrochemical synthesis

André Künzelmann/UFZ

This means that compared to classical petrochemical processes, bio-production of chemicals needs to be cheaper, or in case of comparable costs, offer added value for companies to take the risk of investment into a new production process.

Nevertheless, it is expected that the share of bio-derived‚ green’ chemicals will significantly rise over the next decade. This market is at the centre of the so called‚ ‘white biotechnology’, focussing on biotechnological processes for the production of industrial chemicals, which is distinct from medical (red) and plant (green) biotechnology.

In novel processes at lab-scale, fuels and chemicals can already be produced bio-electrochemically, using microbial synthesis driven by electricity and carbon sources.

However, achieving a broader electrification of white biotechnology is still a challenge, due to the inherently different optimal conditions for electrochemical and microbial metabolic reactions. The current knowledge gaps still require a systematic R&D effort before the technology can be introduced more broadly, as the researchers highlight in their study.

In order to better estimate the economic potential of the new technology, the researchers used the well-established bioprocess of Lysine production and analysed how the supply of electricity as a feed for the bacteria could change the economics of this process.

The scientists now compared the saving in raw materials costs, if the electricity would serve as a source of redox power, rather than sugar oxidation, so that all sugar could potentially be used to build the lysine molecules. Based on different electricity prices in the EU and the US, different scenarios had to be considered. Assuming current market prices for sucrose as the main feedstock and bulk electricity charges on the two continents it was estimated that the electrically enhanced production could save costs of between 8.4% and 18 % in the EU and the US, respectively.

“This does not even consider savings in downstream processing due to a reduced production of by-products, which is expected due to the better redox balance” Dr Krömer (UQ) said.
“If one speculates further and estimates savings over a ten year horizon for a typical 50000 t p.a. plant, one would save 30 Million US$ in the EU and 50 Million US$ in the US.” Dr Harnisch (UFZ) adds.

While this ignores the additional investment costs to enable the bio-electrochemistry, which can currently not be reliably estimated for large scale, this example nevertheless shows that bio-electrochemical production of chemicals can also become interesting from an economical point of view.

Bioelectrochemical technology is an approach with far reaching potential, which is supported by the fact that ChemSusChem, a journal devoted to sustainable chemistry, highlights the current study on its cover page.

Publication:
Harnisch, F., Rosa, L. F. M., Kracke, F., Virdis, B. and Krömer, J. O. (2014): Electrifying White Biotechnology: Engineering and Economic Potential of Electricity-Driven Bio-Production. ChemSusChem. doi: 10.1002/cssc.201402736 http://dx.doi.org/10.1002/cssc.201402736
The studies were funded by the German Ministry of Education and Research (BMBF) (BMBF-Initiative „Nächste Generation biotechnologischer Verfahren - Biotechnologie 2020+"), the Helmholtz Association (Young Investigators Group & Research Program Renewable Energie) and the University of Queensland.

Further information:
Dr. Falk Harnisch
Helmholtz Center of Environmental Research (UFZ), Department of Environmental Microbiology, Head of Research Group „Microbial Bioelectrocatalysis & Bioelectrotechnology“
Phone: +49-(0)341-235-1337
http://www.ufz.de/index.php?en=31006
or
Dr. Luis Filipe Morgado Rosa
Helmholtz Center of Environmental Research (UFZ), Department of Environmental Microbiology, Research Group „Microbial Bioelectrocatalysis & Bioelectrotechnology“
Telefon: +49-(0)341-235-1373
http://www.ufz.de/index.php?en=31835
and
Dr. Jens Krömer,
The University of Queensland
Centre for Microbial Electrochemical Systems (CEMES)
Phone: 07 3346 3222
E-mail: j.kromer@uq.edu.au.

or via
Tilo Arnhold, Susanne Hufe (UFZ press office)
Phone: +49-(0)341-235-1635, -1630
http://www.ufz.de/index.php?en=640

Further Link:
UFZ-Research Group „Microbial Bioelectrocatalysis & Bioelectrotechnology”
http://www.ufz.de/index.php?en=31005

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

The Centre for Microbial Electrochemical Systems (CEMES) is a strategic initiative of the University of Queensland associated with the Advanced Water Management Centre (AWMC). CEMES is at the nexus of industrial and environmental biotechnology and aims at optimization of microbial processes through the manipulation of cellular redox balances with electricity.

Weitere Informationen:

http://www.ufz.de/index.php?en=33620

Susanne Hufe | UFZ News

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>