Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity in Ontario’s Great Lakes region may be greater than we thought

29.08.2013
Genetic tests show big difference between threatened Muskoka-dwelling plant and its New York State cousin indicating that perceived global status may be misleading when assessing species at risk

Branched Bartonia (Bartonia paniculata), a threatened species, is a spindly annual plant that grows to 40 cm tall and has tiny white flowers. Researchers at Trent University compared genetic data from the two geographically distinct populations of this small wetland plant, and found that the Muskoka, Ontario ones are genetically very different from a core population found in New York State, 600 km away.

This discovery suggests that the Branched Bartonia in Ontario is genetically unique, and therefore under a much greater threat – which impacts conservation management decisions. The findings suggest that the genetic diversity, and hence biodiversity, in the Great Lakes region of Ontario may be much greater than previously realized. This research was published today in the journal Botany.

Populations of a species are commonly separated by relatively short distances, yet sometimes there is a leap of several hundred kilometres between a species’ core set of populations and a subset of populations that are known as disjuncts. In Ontario, Canada, numerous species at risk occur as disjunct populations, most commonly around the Great Lakes region.

“Though many of these populations are considered regionally threatened because they harbour a relatively small number of individuals, they may not be considered globally threatened because individuals in the core set of populations (usually further south) are often abundant,” explains Claudia Ciotir, a co-author of the study and researcher in the Department of Environmental and Life Sciences at Trent University in Peterborough, Ontario. “This means that the core populations can downgrade the conservation status of the disjunct populations, but this downgrading assumes that the disjunct and core populations are closely related to one another.”

“Our findings provide evidence that the accumulated genetic novelty between disjuncts and their central populations is important and we recommend that genetic novelty should be factored into future conservation policies of Canadian disjunct populations. We show that comparative genetic assessments of disjunct and central populations can provide information that is critical to decisions about conservation management.”

This divergent evolutionary history may be relevant to a suite of 62 species of disjunct populations residing along the Great Lakes shores. The study “Evolutionary history and conservation value of disjunct Bartonia paniculata subsp. paniculata (Branched Bartonia) populations in Canada” was published today in the journal Botany. >

DOI: dx.doi.org/10.1139/cjb-2013-0063

For more information about this study or to schedule an interview with the authors, please contact:

Claudia Ciotir (co-author)
Trent University
email: claudiaciotir2@trentu.ca
An Kosurko
Marketing & Communications Officer
Trent University
email: Ankosurko@trentu.ca
Jenny Ryan
Manager, Communication
Canadian Science Publishing (NRC Research Press)
email: jennyryan@nrcresearchpress.com
About the journal
Botany, an international journal for plant biology, has been publishing research in all segments of plant sciences since 1929. Published by Canadian Science Publishing, Botany is part of the prestigious NRC Research Press collection of journals. The journal is affiliated with the Canadian Botanical Association and the Canadian Society of Plant Biologists.

Disclaimer

Canadian Science Publishing, an independent not-for-profit company, publishes the NRC Research Press journals but is not affiliated with the National Research Council of Canada. Papers published by Canadian Science Publishing are peer-reviewed by experts in their field. The views of the authors in no way reflect the opinions of Canadian Science Publishing or the National Research Council of Canada. Requests for commentary about the contents of any study should be directed to the authors.

Jenny Ryan | EurekAlert!
Further information:
http://www.nrcresearchpress.com
http://nrcresearchpress.com/doi/story/10.4141/news.2013.08.26.159#.Uh8ItFjwDct

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>