Biochemical signature predicts progression to Alzheimer's disease

A study led by Research Professor Matej Orešiè from VTT Technical Research Centre of Finland suggests that Alzheimer's disease is preceded by a molecular signature indicative of hypoxia and up-regulated pentose phosphate pathway.

This indicator can be analysed as a simple biochemical assay from a serum sample months or even years before the first symptoms of the disease occur. In a healthcare setting, the application of such an assay could therefore complement the neurocognitive assessment by the medical doctor and could be applied to identify the at-risk patients in need of further comprehensive follow-up.

Alzheimer's disease (AD) is a growing challenge to the health care systems and economies of developed countries with millions of patients suffering from this disease and increasing numbers of new cases diagnosed annually with the increasing ageing of populations.

The progression of Alzheimer's disease (AD) is gradual, with the subclinical stage of illness believed to span several decades. The pre-dementia stage, also termed mild cognitive impairment (MCI), is characterised by subtle symptoms that may affect complex daily activities. MCI is considered as a transition phase between normal aging and AD. MCI confers an increased risk of developing AD, although the state is heterogeneous with several possible outcomes, including even improvement back to normal cognition.

What are the molecular changes and processes which define those MCI patients who are at high risk of developing AD? The teams led by Matej Orešiè from VTT and Hilkka Soininen from the University of Eastern Finland set out to address this question, and the results were published on 13th Dec. 2011 in Translational Psychiatry.

The team used metabolomics, a high-throughput method for detecting small metabolites, to produce profiles of the serum metabolites associated with progression to AD. Serum samples were collected at baseline when the patients were diagnosed with AD, MCI, or identified as healthy controls. 52 out of 143 MCI patients progressed to AD during the follow-up period of 27 months on average. A molecular signature comprising three metabolites measured at baseline was derived which was predictive of progression to AD. Furthermore, analysis of data in the context of metabolic pathways revealed that pentose phosphate pathway was associated with progression to AD, also implicating the role of hypoxia and oxidative stress as early disease processes.

The unique study setting allowed the researchers to identify the patients diagnosed with MCI at baseline who later progressed to AD and to derive the molecular signature which can identify such patients at baseline.

Though there is no current therapy to prevent AD, early disease detection is vital both for delaying the onset of the disease through pharmacological treatment and/or lifestyle changes and for assessing the efficacy of potential AD therapeutic agents. The elucidation of early metabolic pathways associated with progression to Alzheimer's disease may also help in identifying new therapeutic avenues.

This study was supported by the project “From patient data to personalised healthcare in Alzheimer's disease” (PredictAD) which was supported by the European Commission under the 7th Framework Programme.

Reference: M. Orešiè, T. Hyötyläinen, S.-K. Herukka, M. Sysi-Aho, I. Mattila, T. Seppänan-Laakso, V. Julkunen, P. V. Gopalacharyulu, M. Hallikainen, J. Koikkalainen, M. Kivipelto, S. Helisalmi, J. Lötjönen, H. Soininen, Metabolome in progression to Alzheimer's disease, Translational Psychiatry, 13th December 2011.

Further information:

VTT Technical Research Centre of Finland
Matej Orešiè, Research Professor
tel. +358 20 722 4491, matej.oresic@vtt.fi
University of Eastern Finland
Hilkka Soininen, Professor
tel. +358 40 5735749, hilkka.soininen@uku.fi

Media Contact

Matej Oresic EurekAlert!

More Information:

http://www.vtt.fi

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors