Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

My, What Big Teeth You Had! – Extinct Species Had Large Teeth on Roof of Mouth

15.09.2008
Paleontologists have found a previously unknown amphibious predator that probably made the Antarctica of 240 million years ago something less than a hospitable place.

When the world's land was congealed in one supercontinent 240 million years ago, Antarctica wasn't the forbiddingly icy place it is now. But paleontologists have found a previously unknown amphibious predator species that probably still made it less than hospitable.

The species, named Kryostega collinsoni, is a temnospondyl, a prehistoric amphibian distantly related to modern salamanders and frogs. K. collinsoni resembled a modern crocodile, and probably was about 15 feet in length with a long and wide skull even flatter than a crocodile's.

In addition to large upper and lower teeth at the edge of the mouth, temnospondyls often had tiny teeth on the roof of the palate. However, fossil evidence shows the teeth on the roof of the mouth of the newly found species were probably as large as those at the edge of the mouth.

"Its teeth, compared to other amphibians, were just enormous. It leads us to believe this animal was a predator taking down large prey," said Christian Sidor, a University of Washington associate professor of biology and curator of vertebrate paleontology at the Burke Museum of Natural History and Culture at the UW.

Sidor is lead author of a paper describing the new species published in the September issue of the Journal of Vertebrate Paleontology. Co-authors are Ross Damiani of Staatliches Museum für Naturkunde Stuttgart in Germany and William Hammer of Augustana College in Rock Island, Ill. The work was funded in part by the National Science Foundation and the Alexander von Humboldt Foundation.

The scientists worked from a fossilized piece of the snout of K. collinsoni, analyzing structures present in more complete skulls for other temnospondyl species that had similar size characteristics.

"The anatomy of the snout tells us what major group of amphibian this fossil belonged to," Sidor said.

Teeth at the edge of the mouth, as well as on the palate roof, were clearly visible, and the presence of structures similar to those that allow fish and amphibians to sense changes in water pressure led the researchers to conclude that the species was aquatic.

The fossilized piece of snout also contains a nostril, which aided the scientists in judging proportions of the head when comparing it to other fossils. They estimated the skull was about 2.75 feet long and perhaps 2 feet across at its widest point.

"Kryostega was the largest animal in Antarctica during the Triassic," Sidor said.

The term "Kryostega" translates to 'frozen' and 'roof,' which refer to the top of the skull. The scientists named the species for James Collinson, a professor emeritus of Earth sciences at Ohio State University who made important contributions to the study of Antarctic geology.

Hammer collected the fossil in 1986 from an Antarctic geological layer called the Fremouw Formation. He has studied a number of other Antarctic fossils, including dinosaurs, collected at about the same time, and so the temnospondyl fossil was not closely examined until the last couple of years.

At the time K. collinsoni was living, all the world's land was massed into a giant continent called Pangea. The area of Antarctica where the fossil was found was near what is now the Karoo Basin of South Africa, one of the richest fossil depositories on Earth.

Sidor noted that in the early Triassic period, from about 245 million to 251 million years ago, just before the period that produced the K. collinsoni fossil, it appears that Antarctica and South Africa were populated by largely the same species. While Antarctica was still colder than much of the world, it was substantially warmer than it is today, though it still spent significant periods in complete darkness.

By the middle of the Triassic period perhaps only half the species were the same, he said, and in the early Jurassic period, around 190 million years ago, unique early dinosaur species were appearing in Antarctica.

"It could be that these animals were adjusting to their local environment by then, and we are seeing the results of speciation occurring at high latitude," Sidor said. "Here we have really good evidence that Antarctic climate wasn't always the way it is today. During the Triassic, it was warmer than it is today – it was warmer globally, not just in Antarctica."

Vince Stricherz | Newswise Science News
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>