Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

My, What Big Teeth You Had! – Extinct Species Had Large Teeth on Roof of Mouth

15.09.2008
Paleontologists have found a previously unknown amphibious predator that probably made the Antarctica of 240 million years ago something less than a hospitable place.

When the world's land was congealed in one supercontinent 240 million years ago, Antarctica wasn't the forbiddingly icy place it is now. But paleontologists have found a previously unknown amphibious predator species that probably still made it less than hospitable.

The species, named Kryostega collinsoni, is a temnospondyl, a prehistoric amphibian distantly related to modern salamanders and frogs. K. collinsoni resembled a modern crocodile, and probably was about 15 feet in length with a long and wide skull even flatter than a crocodile's.

In addition to large upper and lower teeth at the edge of the mouth, temnospondyls often had tiny teeth on the roof of the palate. However, fossil evidence shows the teeth on the roof of the mouth of the newly found species were probably as large as those at the edge of the mouth.

"Its teeth, compared to other amphibians, were just enormous. It leads us to believe this animal was a predator taking down large prey," said Christian Sidor, a University of Washington associate professor of biology and curator of vertebrate paleontology at the Burke Museum of Natural History and Culture at the UW.

Sidor is lead author of a paper describing the new species published in the September issue of the Journal of Vertebrate Paleontology. Co-authors are Ross Damiani of Staatliches Museum für Naturkunde Stuttgart in Germany and William Hammer of Augustana College in Rock Island, Ill. The work was funded in part by the National Science Foundation and the Alexander von Humboldt Foundation.

The scientists worked from a fossilized piece of the snout of K. collinsoni, analyzing structures present in more complete skulls for other temnospondyl species that had similar size characteristics.

"The anatomy of the snout tells us what major group of amphibian this fossil belonged to," Sidor said.

Teeth at the edge of the mouth, as well as on the palate roof, were clearly visible, and the presence of structures similar to those that allow fish and amphibians to sense changes in water pressure led the researchers to conclude that the species was aquatic.

The fossilized piece of snout also contains a nostril, which aided the scientists in judging proportions of the head when comparing it to other fossils. They estimated the skull was about 2.75 feet long and perhaps 2 feet across at its widest point.

"Kryostega was the largest animal in Antarctica during the Triassic," Sidor said.

The term "Kryostega" translates to 'frozen' and 'roof,' which refer to the top of the skull. The scientists named the species for James Collinson, a professor emeritus of Earth sciences at Ohio State University who made important contributions to the study of Antarctic geology.

Hammer collected the fossil in 1986 from an Antarctic geological layer called the Fremouw Formation. He has studied a number of other Antarctic fossils, including dinosaurs, collected at about the same time, and so the temnospondyl fossil was not closely examined until the last couple of years.

At the time K. collinsoni was living, all the world's land was massed into a giant continent called Pangea. The area of Antarctica where the fossil was found was near what is now the Karoo Basin of South Africa, one of the richest fossil depositories on Earth.

Sidor noted that in the early Triassic period, from about 245 million to 251 million years ago, just before the period that produced the K. collinsoni fossil, it appears that Antarctica and South Africa were populated by largely the same species. While Antarctica was still colder than much of the world, it was substantially warmer than it is today, though it still spent significant periods in complete darkness.

By the middle of the Triassic period perhaps only half the species were the same, he said, and in the early Jurassic period, around 190 million years ago, unique early dinosaur species were appearing in Antarctica.

"It could be that these animals were adjusting to their local environment by then, and we are seeing the results of speciation occurring at high latitude," Sidor said. "Here we have really good evidence that Antarctic climate wasn't always the way it is today. During the Triassic, it was warmer than it is today – it was warmer globally, not just in Antarctica."

Vince Stricherz | Newswise Science News
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner
18.02.2019 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>