Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big discoveries about tiny particles

09.10.2018

Doctoral student leads international effort to uncover properties of polymer nanoparticles

From photonics to pharmaceuticals, materials made with polymer nanoparticles hold promise for products of the future. However, there are still gaps in understanding the properties of these tiny plastic-like particles.


In this illustration, arrows indicate the vibrational activity of particles studied by UD researchers, while the graph shows the frequencies of this vibration.

Credit: Illustration courtesy of Hojin Kim

Now, Hojin Kim, a graduate student in chemical and biomolecular engineering at the University of Delaware, together with a team of collaborating scientists at the Max Planck Institute for Polymer Research in Germany, Princeton University and the University of Trento, has uncovered new insights about polymer nanoparticles. The team's findings, including properties such as surface mobility, glass transition temperature and elastic modulus, were published in Nature Communications.

Under the direction of MPI Prof. George Fytas, the team used Brillouin light spectroscopy, a technique that spelunks the molecular properties of microscopic nanoparticles by examining how they vibrate.

"We analyzed the vibration between each nanoparticle to understand how their mechanical properties change at different temperatures," Kim said. "We asked, 'What does a vibration at different temperatures indicate? What does it physically mean?' "

The characteristics of polymer nanoparticles differ from those of larger particles of the same material. "Their nanostructure and small size provide different mechanical properties," Kim said. "It's really important to understand the thermal behavior of nanoparticles in order to improve the performance of a material."

Take polystyrene, a material commonly used in nanotechnology. Larger particles of this material are used in plastic bottles, cups and packaging materials.

"Polymer nanoparticles can be more flexible or weaker at the glass transition temperature at which they soften from a stiff texture to a soft one, and it decreases as particle size decreases," Kim said. That's partly because polymer mobility at small particle surface can be activated easily. It's important to know when and why this transition occurs, since some products, such as filter membranes, need to stay strong when exposed to a variety of conditions.

For example, a disposable plastic cup made with the polymer polystyrene might hold up in boiling water--but that cup doesn't have nanoparticles. The research team found that polystyrene nanoparticles start to experience the thermal transition at 343 Kelvin (158 degrees F), known as the softening temperature, below a glass transition temperature of 372 K (210 F) of the nanoparticles, just short of the temperature of boiling water. When heated to this point, the nanoparticles don't vibrate--they stand completely still.

This hadn't been seen before, and the team found evidence to suggest that this temperature may activate a highly mobile surface layer in the nanoparticle, Kim said. As particles heated up between their softening temperature and glass transition temperature, the particles interacted with each other more and more. Other research groups have previously suspected that glass transition temperature drops with decreases in particle size decreases because of differences in particle mobility, but they could not observe it directly.

"Using different method and instruments, we analyzed our data at different temperatures and actually verified there is something on the polymer nanoparticle surface that is more mobile compared to its core," he said.

By studying interactions between the nanoparticles, the team also uncovered their elastic modulus, or stiffness.

Next up, Kim plans to use this information to build a nanoparticle film that can govern the propagation of sound waves.

Eric Furst, professor and chair of the Department of Chemical and Biomolecular Engineering at UD, is also a corresponding author on the paper.

"Hojin took the lead on this project and achieved results beyond what I could have predicted," said Furst. "He exemplifies excellence in doctoral engineering research at Delaware, and I can't wait to see what he does next."

Media Contact

Peter Kerwin
pgkerwin@udel.edu
302-831-8749

 @UDResearch

http://www.udel.edu 

Peter Kerwin | EurekAlert!
Further information:
https://www.udel.edu/udaily/2018/september/hojin-kim-polymer-nanoparticles/

More articles from Life Sciences:

nachricht Genes responsible for difference in flower color of snapdragons identified
09.10.2018 | Institute of Science and Technology Austria

nachricht Cleaning, but safely! Cocoons protect sensitive ant brood during toxic disinfection
09.10.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers discover how fatal biofilms form

By severely curtailing the effects of antibiotics, the formation of organized communities of bacterial cells known as biofilms can be deadly during surgeries and in urinary tract infections. Yale researchers have just come a lot closer to understanding how these biofilms develop, and potentially how to stop them.

Biofilms form when bacterial cells gather and develop structures that bond them in a gooey substance. This glue can protect the cells from the outside world...

Im Focus: Flying High with VCSEL Heating

Additive manufacturing processes are booming, with the rapid growth of the formnext trade fair a clear indication of this. At formnext 2018, the Fraunhofer Institute for Laser Technology ILT will be showing a new process in which the component in the powder bed is heated with laser diodes. As a result, distortion can be reduced, taller parts generated and new materials used.

In just three years, formnext has established itself as the industry meeting place to get the latest on additive manufacturing (AM) processes. With 470...

Im Focus: Breakthrough in quantum physics: Reaction of quantum fluid to photoexcitation of dissolved particles

Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet.

In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on...

Im Focus: Chemists of TU Dresden develop highly porous material, more precious than diamonds

World Record of Cavities

Porosity is the key to high-performance materials for energy storage systems, environmental technologies or catalysts: The more porous a solid state material...

Im Focus: New function of “kidney-gene”: WT1 plays a role in the central nervous system and controls movement

The WT1 gene fulfills a central role in the development of a healthy, proper functioning kidney. Mutations in WT1 lead to impairments in kidney development and cause Wilms tumors, a pediatric kidney cancer. Researchers of the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena have now discovered a further important function of WT1. It is also active outside the kidneys in the central nervous system and is involved in controlling movement. If the gene is missing in the spinal cord, locomotor aberrancies occur. The results have now been published in Life Science Alliance.

Transcription factor WT1 (Wilms tumor 1) has been known for nearly 30 years and it is significantly involved in the development of a healthy and properly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Cleaning, but safely! Cocoons protect sensitive ant brood during toxic disinfection

09.10.2018 | Life Sciences

Copper ions flow like liquid through crystalline structures

09.10.2018 | Materials Sciences

There's a better way to decipher DNA's epigenetic code to identify disease

09.10.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>