Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better healing for eardrum injuries? - new adhesive structures for medical applications

17.04.2019

In cooperation with the Saarland University Hospital, the INM has developed bioinspired adhesive structures for the treatment of eardrum injuries. The adhesive structures are now to be transferred into a biomedical product.

More than 30 million people worldwide suffer from eardrum injuries every year. If inadequately treated, the resulting hearing loss can severely restrict the patients' quality of life.


Innovative adhesive structures of the INM are examined for their medical suitability for eardrum injuries.

Source: Iris Maurer; free within this press release

Smaller injuries can be treated by applying silicone or paper strips - larger cracks even require tissue transplantation. However, the tissues can slip.

Inflammation can lead to premature dissolution of the transplants or permanently impair the auditory canal as a result of scarring. Then, subsequent surgery becomes necessary, which puts the patient under renewed strain.

In cooperation with the Saarland University Hospital, the INM has developed bioinspired adhesive structures for the treatment of eardrum injuries. The adhesive structures are now to be transferred into a biomedical product.

"In a feasibility study with the University Hospital in Homburg, Germany, we tested our Gecko-inspired adhesive structures on ear drums of mice: They adhered reliably without peeling or slipping," explains Eduard Arzt, head of the Functional Microstructures Program Division and Scientific Director at the INM.

“Thanks to the exceptional adhesive properties, the patch can be removed after successful healing without causing new injuries to the eardrum," explains biologist Klaus Kruttwig. The gecko structures not only bridge the cracks, the micropattern is also expected to improve the healing process.

"The new material is soft and adaptable. It is easy and quick to apply to the eardrum. We expect that hospital stays will be significantly shorter and complications will be rarer," said Professor Schick, Director of the Department of Otorhinolaryngology at the University Hospital. "We are therefore very confident that we will find a market for this product".

For the next step, INM now received an ERC Proof of Concept Grant (PoC): The one-and-a-half year project STICK2HEAL serves to conduct technical and pre-clinical assessments and to prepare the approval of the adhesion structures as a medical product. In addition, potential markets for wound dressings are to be analysed and cooperation partners in industry and hospitals identified.

In addition to eardrum repair, the PoC project opens up a broad field of application when materials are to adhere to the body without glue for a limited period of time.

Background:
In 2013, Eduard Arzt received an Advanced Grant from the European Research Council (ERC) amounting to around 2.5 million euros. In recent years, Arzt and his team have developed three-dimensional structures and surfaces whose functions can be switched on and off by external stimuli. The results have been published in renowned scientific journals and protected by new patent families. After the first ERC Proof of Concept project SWITCH2MARKET was used to transfer the adhesive structures for robotics, STICK2HEAL now concentrates on biomedical applications. The University Hospital in Homburg is an essential cooperation partner. The project is funded by the European Research Council with around 150,000 euros.

Wissenschaftliche Ansprechpartner:

Leibniz Institute for New Materials
Scientific Director and Chairman
Head Functional Microstructures
Phone. +49681-9300-500
eduard.arzt@leibniz-inm.de

Dr. Klaus Kruttwig
Leibniz Institute for New Materials
Head Biocompatible Structures
Phone: +49681-9300-145
klaus.kruttwig@leibniz-inm.de

Univ. - Prof. Dr. med. Bernhard Schick
Saarland University Hospital and Medical Faculty of Saarland University
Director of the Department of Otorhinolaryngology
Phone: +496841 – 16-22984
hno.chefsekretariat@uks.eu

Dr. Carola Jung | idw - Informationsdienst Wissenschaft
Further information:
http://www.inm-gmbh.de

More articles from Life Sciences:

nachricht Structual color barcode micromotors for multiplex biosensing
21.01.2020 | Science China Press

nachricht Cyanobacteria in water and on land identified as source of methane
21.01.2020 | Forschungsverbund Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new look at 'strange metals'

21.01.2020 | Materials Sciences

Body's natural signal carriers can help melanoma spread

21.01.2020 | Health and Medicine

Structual color barcode micromotors for multiplex biosensing

21.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>