Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Bees Learn Which Odors to Follow

28.02.2011
Scientists at Freie Universität Berlin and the Bernstein Center Berlin have traced odor memory to a certain area of the bee brain.

How successful bees are in their search for food depends largely on how well they can, based on their odors, detect nectar-rich flowers from a distance and distinguish them from less promising plants.

Researchers around Professor Randolf Menzel, a neurobiologist at Freie Universität’s Department of Biology, Chemistry, and Pharmacy, investigated how and whether bees can recognize a relationship between the odor and nectar of a particular flower and whether this association is localized in a certain area of the bee brain. The work was supported by the German Federal Ministry of Education and Research as part of the projects of Bernstein Center Berlin and Bernstein Focus Learning: Memory and Decision Making.

The researchers caught nectar-collecting bees when they were about to swarm out from their hive, and “sent them to school” in their lab. The curriculum contained five different artificial fragrances. First, the bees were introduced to all five odors. Then, in a learning phase, one of the odors was always followed by presentation of a drop of sugar solution, while another odor went unrewarded. This form of classical Pavlovian conditioning is based on the proboscis extension reflex, which is elicited when the bees’ antennas get into contact with sweet liquids. The bees quickly learned to extend their probosces and collect the sugar solution whenever the rewarded odor was presented. This response was faithfully maintained for three hours after learning.

To investigate the neural basis of this memory process, as part of his dissertation at Freie Universität, the biologist Martin Strube-Bloss, currently at the Max Planck Institute for Chemical Ecology in Jena, measured electrical reactions of certain nerve cells, namely the output neurons in the mushroom bodies of the bee brain, which had already been raised as candidates for learning. The result was surprising. During the learning phase, the activities in the neurons did not change at all. But three hours after learning, there was a change: more neurons responded to the rewarded stimulus, and the responses to the rewarded stimulus were stronger. So the researchers had actually found a memory trace. Because of its time delay, they could even conclude that it was not due to the learning process itself or to short-term memory, but that they had rather identified the seat of long-term odor memory.

Mathematical analysis by Martin Nawrot, a computational neurobiologist at Freie Universität Berlin, showed that the memory trace in the mushroom body is extremely reliable. Just 150 milliseconds after presentation of an odor, the researchers could already tell, on the basis of the output neurons of the mushroom body, whether it was the rewarded odor or not. So it seems that the bee could safely rely on this group of neurons in order to tell whether an odor is promising, or – in the wild – which odor it is worthwhile to follow in order to find a nectar-bearing flower.

On the basis of their results, the researchers are now developing a computer model of the bee brain that can associate virtual odors with rewards and is able to make decisions on the basis of what it has learned. In the near future, such artificial brains are then to be applied in biomimetic robots.

The Bernstein Center Berlin is part of the Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. It was named in honor of the German physiologist Julius Bernstein (1835–1917).

For further information please contact:

• Prof. Martin Nawrot, Freie Universität Berlin, Institute of Biology – Neurobiology, Computational Neuroscience Group, Tel.: +49 (0)30 838 56692; Email: martin.nawrot@fu-berlin.de

• Dr. Martin Strube-Bloss, Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Tel.: +49 (0)3641 57 1452; Email: mstrube-bloss@ice.mpg.de

Original Publication:
Strube-Bloss MF*, Nawrot MP*, Menzel R (2011): Mushroom Body Output Neurons Encode Odor-Reward Associations, J. Neurosci. 31: 3129-3140, * equal contribution
Weitere Informationen:
http://www.bccn-berlin.de - Bernstein Center for Computational Neuroscience, Berlin
http://www.nncn.de - Bernstein Network for Computational Neuroscience
http://www.bcp.fu-berlin.de - Freie Universität Berlin
http://www.fu-berlin.de/neuroinformatik - Lab of Theoretical Neuroscience / Neuroinformatics of Prof. Nawrot, FU Berlin
http://www.ice.mpg.de - Max Planck Institute for Chemical Ecology, Jena

Dr. Simone Cardoso de Oliveira | idw
Further information:
http://www.nncn.de

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>