Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beehive:It’s time to sleep, little bee!

17.07.2014

The division of labor is very strict in a beehive. The same applies to periods of rest: honey bees sleep with other members of their professional group, as researchers from the University of Würzburg’s Biocenter have discovered.

The activities in a bee colony are highly organized. The insects adhere to a strict division of labor: cleaning combs, feeding the brood and the queen, producing wax and building combs, keeping watch in front of the hive, foraging for nectar and pollen – each of these tasks is carried out by a specific “professional group”.


A forager bee has clamped itself between two combs using its head and the end of its abdomen so it can sleep. This image comes from a hive and was taken using an endoscope with an infrared light.

(Photo: Hobos team)

But what is the situation with periods of sleep and rest? Do these merely represent a lack of activity, where the bees simply do nothing in the location they happen to be in at that time? Or does the bee colony also exhibit sleep behavioral patterns that are specific to their professional groups? This is exactly what happens, as biologists Barrett Klein, Martin Stiegler, Arno Klein, and Jürgen Tautz from the universities of Würzburg and Wisconsin – La Crosse (USA) report in the journal PLoS ONE.

Inside workers sleep in the middle

... more about:
»PLoS »activity »antennae »beehives »breeding »clock »colony »humans »insects »night »sleep

Young bees that work inside generally sleep in empty cells close to the middle of the hive, usually in the breeding area. They have several sleep periods daily, spread over day and night. “The breeding area is a bustling place around the clock,” says Jürgen Tautz, “so empty cells there presumably offer the least chance of being disturbed while sleeping.”

When bees switch from inside to outside service, their sleep periods are gradually delayed. Tautz explains: “The older the bees become, the less they sleep. As forager bees, they demonstrate a clear day-night rhythm to their sleeping behavior. They then generally sleep outside cells and closer to the edge of the combs. There they are likely to be largely undisturbed at night.”

Initial findings about sleeping insects

Sleep in insects: The door to this research field was opened in 1983. At that time, German zoologist Walter Kaiser presented new findings about honey bees, and Swiss researcher Irene Tobler published a comparable paper about cockroaches.

The fact that non-vertebrates also demonstrate a genuine sleep behavior came as such a surprise back then that many scientists were reticent in their response, as Tautz explains. Würzburg bee researcher Martin Lindauer had found early indications as far back as 1952: During continuous day-night observations of individual forager bees, he noted that they were “idle” at night especially.

“Over time, more and more similarities have emerged between sleep in bees and sleep in humans,” says Tautz. While initially bee sleep was only detected in phases of immobility, scientists later identified periods of sleep of varying depth as well in the flying insects. As in humans, sleep deprivation in bees also reduces their ability to learn and communicate.

Biological function remains unclear

Also common to both is the fact that, like in humans, many questions remain unanswered regarding the biological function that sleep has in bees. Various explanations have admittedly been proposed by the scientific community, but none of them is universally recognized. One hypothesis assumes, for example, that the organism regenerates itself during sleep. Another regards sleep as an energy-saving measure, and a third suggests that during sleep the brain separates important from unimportant information, meaningfully committing the former to memory.

Beehive is monitored online

The Würzburg research team is keen to conduct further studies to find out more about how bees sleep. Tautz’s team will use a variety of tools, including the Hobos system (Hobos stands for “Honeybee Online Studies”): This monitors the activity in a beehive online around the clock using various sensor and measuring techniques, and the values can be retrieved on the Internet: http://www.hobos.de

New sleep posture discovered

Using Hobos, the Würzburg researchers have now also discovered a previously unknown sleep posture in bees: The insects clamp themselves between two combs using their head and the end of their abdomen and leave their antennae and legs dangling relaxed. They can remain completely motionless in this position for up to 30 minutes. Otherwise, bees sleep by simply squatting in one place with their antennae hanging down.

Barrett Klein, Martin Stiegler, Arno Klein, Jürgen Tautz: "Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep", PLoS ONE 2014, July 16

Contact

Prof. Dr. Jürgen Tautz, Biocenter at the University of Würzburg, T +49 (0)931 31-84319, tautz@biozentrum.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: PLoS activity antennae beehives breeding clock colony humans insects night sleep

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>